
60

Chapter 7

Initial ADSL Line Simulator

Design

The initial ADSL line simulator design was based solely on signal manipulation in the frequency

domain. At the heart of the design are a FFT, manipulation block and an IFFT. Two implementation

paths using Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA) were

evaluated in terms of five metrics. In order to give an easily re-configurable environment, parameters

describing the access line’s response, noise and crosstalk environment must be continuously

downloadable during a simulation run, either from a pre-computed data store or generated real time

through a PC control interface. A detailed high level design using FPGAs was completed identifying

peripheral signal conversion, logic and memory components.

7.1 Line Simulator Block Functionality

Figure 7.1 shows the basic block functionality of the initial simulator design. As previously mentioned,

signal manipulation for line response, noise and crosstalk, is performed solely in the frequency domain

through frequency filtering and spectral component addition respectively.

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

61

Line Attenuation ,
Phase, Noise and

Crosstalk Frequency
Samples from PCADSL Modem (Tx)

POTS splitter POTS splitter
ADSL Modem (Rx)

ADSL PSD
Samples for

Crosstalk Modelling
To PC

Figure 7.1 ADSL line simulator functional block diagram

A/D DFT D/AIDFTFrequency Domain
Manipulation

Analog
Conditioning

Analog
Conditioning

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

62

7.2 Frequency Filter and FFT Implementation

Frequency filtering operates on a block processing principle. Repeatedly over each sampling window,

N consecutive time samples are processed to give a block of N computed frequency samples (positive

and negative). The frequency samples in each block must be multiplied by N complex discrete filter

response samples. The resulting manipulated block of frequency components is then transformed back

to the time domain using an IFFT. Clearly, for real-time simulation, each time a block ‘enters’ the FFT,

a manipulated block must ‘leave’ the IFFT to prevent a build up of blocks requiring manipulation. If all

three processes are carried out within the period of one sampling window, the overall signal will be

subject to just one sampling window delay. However, such a scheme is both computationally expensive

and unnecessary. The three processes of FFT, manipulation and IFFT may be pipelined so that each

takes one time sampling window to compute. The result is a signal delayed by three sampling windows.

The FFT algorithm for an ADSL line simulator must repeatedly compute a 16-bit 1024 point DFT

within one sampling window. At 4.416 MSPS, the sampling window, Tw, of a 1024 point DFT is given

by:

Before any peripheral circuitry can be designed, the practical FFT implementation must be chosen. The

peripheral circuitry for signal conversion, control logic and PC interfacing will essentially be designed

around individual FFT solutions.

Three fundamental hardware approaches to performing the FFT were considered: hardware specific

transform chips, DSPs and FPGAs. Most hardware FFTs are designed to operate in the audio spectrum

and none were found offering the required performance of a 16-bit 1024 point DFT computed within

the 232 µs sampling window.

In order to evaluate the suitability of using a DSP or FPGA to perform the FFT, manipulation and

IFFT, the following five metrics were considered:

1. 1024 point 16-bit FFT / IFFT execution time

2. Chip packaging

3. Prototype and production costs

4. Versatility to implement new simulator functionality with minimal hardware redesign

5. Future adaptability to VDSL line simulation

The first metric, speed of execution, is obviously the most important for either a university or industrial

based project, but the following four would rate differently in terms of importance within different

development teams. For example, chip packaging and prototyping costs are very important to a four

s

f
N

NTT

s

sw

µ232
10x416.4

1024
6

==

=

=

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

63

month MSc project conducted in a setting with no established development hardware, whereas

production cost and future adaptability to VDSL line simulation may be rated more highly in a

commercial organisation with on-going DSL modem design programs.

7.2.1 Implementation Using DSPs

DSPs are basically microprocessors with architectures specifically designed for the repeated arithmetic

operations commonly encountered in performing signal processing functions such as filtering,

correlation and FFTs. As with common microprocessors, the CPU executes machine code instructions

sequentially although some degree of parallelism may be incorporated. Complex mathematical

functions are written either in machine code directly for specific processors, or in a higher level

language such as C which is processor independent, then compiled down to machine code for a specific

DSP architecture. Both machine code libraries specific to individual DSP architectures and higher-level

software libraries exist for almost every signal processing function imaginable.

7.2.1.1 Speed Metric

From the outset, the decision to use a FFT library function or to write one’s own code must be taken.

The execution time of an existing function written in C will vary according to the target DSP

architecture and compiler used. However, benchmark performance figures are generally available with

individual functions on at least one host architecture. Although this will vary on different platforms, the

performance figures give a good initial figure for execution time. Machine code library function

execution times are fairly easy to determine as these are processor specific and will be published with

the number of machine cycles required to run the entire algorithm. With knowledge of the processor

clock period, a simple calculation gives the execution time. Although existing functions are not

necessarily speed optimised, the prospective improvement through writing speed optimised code is

unlikely to be dramatic and without extensive effort may even give reduced performance. Therefore for

assessment of the speed metric, published benchmark performance figures are used.

Table 7.1 lists the execution times of 1024 point 16-bit radix 4 FFT algorithms on a representative

selection of the latest DSP platforms1,2,3.

DSP Software Type
Clock Speed

(MHz)

Execution Time

(µs)

TMS320C6202 Machine Code 250 53

TMS320C6701 Machine Code 167 108

TigerSHARC C 250 41

DSP56600 Machine Code 60 287

Table 7.1 FFT execution times on various DSP architectures

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

64

The first three entries in table 7.1 represent the latest DSP products, either at the product preview or

sample distribution stage. The final entry for the Motorola DSP56600 is a current production device,

released four years ago. The difference in processor clock speeds between the latest and established

DSPs is quite dramatic and shows DSPs have only recently reached performance levels advanced

enough to execute the 1024 point FFT identified for ADSL line simulation within 232 µs on a single

device.

Both the Analog Devices TigerSHARC and the Texas Instruments TMS320C6202 DSPs are fast

enough to implement both the FFT and IFFT functions within one 232 µs sampling period. Using the

TMS320C6202, the 1024 complex (vectored) frequency filter multiplications each require 56 cycles, a

total of 229 µs. In contrast, 1024 complex additions require just 2064 cycles or 8 µs. Clearly, to

implement the transformations and signal manipulation algorithm would require two DSPs.

Alternatively a hybrid solution with a single DSP to perform the transforms and a small FPGA for the

multiplications and additions could be used, shown in figure 7.2.

7.2.1.2 Chip Packaging

Table 7.2 shows the packaging options for the four DSPs identified above.

DSP Package

TMS320C62xx 352 / 348 pin BGA

TMS320C67xx 452 pin BGA

TigerSHARC 400 pin BGA

DSP56600 144 pin QFP / BGA

Modified ADSL
Frequency samples

Output
Time samples

Table 7.2 DSP packaging options

Computed ADSL
Frequency samples

ADSL
Time samples

TMS320C6202

FFT IFFT

FPGA

Frequency Filter Multiplications
Noise / Crosstalk Additions

Figure 7.2 Hybrid DSP / FPGA solution

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

65

7.2.1.3 Prototyping and Production Costs

Since DSP solutions are fundamentally software based, some form of software emulation is required to

verify code before functionality testing is performed on a development board. Both comprehensive

emulation software and development kits cost several thousands of pounds each.

As is seen from table 7.2, the three DSPs capable of meeting the speed requirements are packaged in

very large devices and are not really convenient for prototyping in a university environment with

extremely limited resources.

Unit costs are difficult to determine as silicon suppliers tend to avoid single quantity supply, preferring

instead to offer evaluation samples of devices, then minimum shipments of several tens of units.

Samples may possibly be obtained via a large industrial sponsor such as Fujitsu. Currently the

TMS320C6202 is quoted at $655 per unit with a minimum shipment of 200 units4.

7.2.1.4 Versatility

One of the prime advantages of using a DSP to perform the FFT / IFFT functions is the ease with

which they can be reprogrammed to give new functionality. Even with the hybrid approach of figure

7.2, on The TMS320C6202 there would be approximately 125 µs of ‘free’ processor time available

each time sample window for added functionality.

7.2.1.5 Future Adaptability to VDSL Line Simulation

A quick calculation of the sampling window for the FFT described in chapter 5 of a 2048 point radix 2

FFT, with time samples at 50 MSPS gives

From the DSP benchmarks, a 2048 point radix 2 FFT would take 183 µs to execute on the

TMS320C6202. In terms of the required speed increase to execute the function within the given 41 µs,

a quadrupling of processor speed is required. A more efficient 4096 point radix 4 FFT requires 251 µs

to perform. With a sampling window of 82 µs (4096 samples instead of 2048), real time processing

requires a three-fold increase in computation speed. Considering the increase in clock speeds over the

last four years (from the TMS320C32-60 to the TMS320C6202 and from the SHARC to TigerSHARC

DSPs) a VDSL line simulator will probably be feasible using one DSP to perform the FFT and another

for the IFFT within a few years.

s

f
N

T
s

w

µ41
10x416.4

2048
6 ==

=

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

66

Even if the packaging of new faster DSPs is different to the latest chips from the same manufacturer,

the DSP solution does offer a logical proving ground towards a VDSL simulator.

7.2.2 Implementation Using FPGAs

7.2.2.1 Speed Metric

Unlike DSPs, FPGAs don’t operate on a predefined maximum device clock. Instead, performance is

determined by logic and path delays within a device. As such, it is impossible to accurately predict the

performance of a new design without physically placing and routing it inside a target device. The

design of a complex block such as a large FFT would take an experienced designer many man-hours

and would be a highly iterative process to minimise logic and routing delays. However, the interest in

the possible use of FPGAs to perform FFT functions was spurned by the ‘Core’ program piloted by the

largest FPGA supplier, Xilinx.

The Core program provides many pre-designed and verified functional blocks with guaranteed

execution times on specific target devices. In complex logic designs, an externally driven clock signal

is introduced for synchronous operation so the performance of a particular Core design is given in

terms of a maximum clocking frequency and number of clock cycles required. The minimum clock

period is determined by the maximum critical net and logic delay within the Core design. Appendix 4

includes a list of available Cores and appendix 5 details three Cores of interest: 1024 point FFTs,

parallel multipliers and registered adders.

With reference to the FFT Core data sheets in appendix 5, a 1024 point, 16-bit FFT can be performed

in 17408 clock cycles. Further into the data sheet, an approximate period of 60 ns is given for external

read access timing for the XC4013E-3 device. From the timing diagrams there are two clock periods

for each memory read cycle, giving a clock period of approximately 30 ns (33 MHz) and total FFT

execution time of 522 µs. Targeted at this device, the FFT Core isn’t fast enough for real-time

processing in the line simulator.

The XC4013E-3 is a fairly old device. Xilinx rate their chips with speed grades because, as previously

mentioned, clock speeds only apply to synchronous designs and are different for each design. Two

newer, improved versions of the XC4000 FPGA series have since been introduced, the XC4000XL

series and in 1998 the XC4000XLA series. The XLA grades are claimed to have significant

improvements in maximum clock speeds over the older ‘E’ grades. Figures 7.3 and 7.4 show extracts

from Xilinx literature promoting the E and XLA XC4000 series.

The XC4000XLA speed grade saw the introduction of resources for a special ‘Fast Clock’ in addition

to the standard ‘Global Clock’ resources present in the E grades. Comparison of the Global Clock of

the E-3 and XLA speed grades show a predicted increase in chip speed of approximately 138%

((133 – 56) / 56). If this improvement is seen in targeting the FFT Core to the fastest XLA device, the

execution time should be reduced from 522 µs to just 222 µs, within the target of the time sampling

window.

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

67

Cores also exist for parallel multipliers and scaled adders to implement the signal manipulation.

Multiplication using FPGAs is implemented using lookup tables, whereas digital processors use

repeated addition. With reference to appendix 5, targeted at XC4000E-1 devices, 16-bit by 16-bit

multiplication requires just 5 cycles of the 58 MHz clock, or 86 ns. The multiplication Core deals with

scalars, not vectors, therefore separate multiplications are needed for both the real and imaginary parts

of each of the computed 1024 ADSL frequency samples. In the XC4000E-1 series, the total of 2048

multiplications would take 176 µs, but targeted at the fastest XC4000XLA speed grade the execution

time should fall to about 108 µs (62% speed improvement). The Core multiplies two 16-bit numbers

giving a 32-bit result. Obviously since the physical line is always attenuating, the simulator must

multiply by numbers less than one. This can be achieved by ignoring the lower 16 bits of the result,

shown in figure 7.5.

If the frequency sample to be attenuated is 16-bits wide, then the most significant 16-bits of the result

of a multiplication by 216 is equivalent to a unity multiplication. To attenuate by 2 use a multiplying

coefficient of 216/2 and use the 16 most significant bits of the result only.

Figure 7.3 XC4000E chip speeds

Figure 7.4 XC4000XLA chip speeds

N

Figure 7.5 Multiplication by coefficients < 1

N

16 MSBs

16 LSBs

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

68

The addition Core data sheet in appendix 5 doesn’t include performance figures. However, addition

should be at least as quick as multiplication when implemented using the CLBs of an FPGA. A ball

park figure from the net and logic delay of an N-bit adder5 of 4.5 + 0.35N ns, gives a processing time of

approximately 21 µs for 2048 additions (real and imaginary parts) for the E-3 speed grade.

Combining the processing times for the signal multiplications and additions, using the fastest XLA

grade device both functions can be performed within approximately 130 µs, well within one time

sampling window.

7.2.2.2 Chip Packaging

Each Core design requires a minimum number of CLBs, listed in the relevant data sheet. The smallest

device required for the FFT Core is the XC4013, which is available in 160 pin QFP packaging. For the

manipulation block, the 16-bit area optimised multiplier Core requires 213 CLBs, while the 16-bit

adder needs just 9. The total of 222 CLBs are available in the smallest XLA device, the XC4013XLA,

which contains 576 CLBs.

Commercial, zero insertion force, multiple extraction cycle 160 pin QFP sockets are available with

convenient pin layout which would enable prototyping within a university environment.

7.2.2.3 Prototyping and Production Costs

A total of three XC4013XLA devices are required to implement the FFT, IFFT and manipulation

blocks using Cores. The XC4013XLA-07PQ160C is quoted at £59.99 from MicroCall. In addition to

hardware, the Foundation software design suite is required to generate Cores and finally place and

route in target devices. A single university licensed copy of the full package costs £373 (Normally

$7995).

Both prototyping and production costs for an FPGA implementation are a fraction of that for a DSP

solution.

7.2.2.4 Versatility

Xilinx FPGAs are programmed by a serial bit stream stored in a PROM during the initialisation period

immediately after power up. The internal CLB configuration and hence the functionality of the device

is determined by the content of this bit stream. Therefore, within the limitations of the physical layout

of a FPGA based simulator board, new functionality can be programmed to an existing FPGA device if

sufficient CLB resources are available on that device.

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

69

The FFT / IFFT Cores each utilise approximately 90% of the two XC4013 devices (532 out of 576

CLBs), with the multiplier and adder using 39% of a similar device, so some scope is present for

revised functionality based on a simulator board with three FPGA devices without hardware

modification. Combining the spare resources from all three FPGAs after their Cores have been placed

and routed, approximately 442 CLBs are free for implementing other control and support logic which

may also be required on the simulator board.

7.2.2.5 Future Adaptability to VDSL Line Simulation

A simulator design based on the 1024 point FFT Core is less adaptable to future use for VDSL line

simulation because larger 2048 and 4096 point FFT Cores don’t exist. In addition to this requiring the

in-house development of larger FFT functions, considerably more CLBs would be needed for their

implementation. However, the fundamental signal processing approach could be proved using FPGAs

for the simulation of ADSL lines then a larger VDSL simulator built.

In terms of speed, the VDSL simulation requirement of a 2048 point FFT computed in just 41 µs

implemented using FPGAs requires a projected 10 fold speed increase, considerably more than the

three fold increase required of a DSP solution.

7.2.3 Preferred Implementation

Overall, mainly due to ease of prototyping and cost, the FPGA solution to FFT, IFFT and signal

manipulation is preferred over the hybrid DSP-FPGA solution.

7.3 Overall Line Simulator Design

Once the decision to use FPGAs to implement the simulator’s fundamental functions is taken, an

overall design around these blocks can be made. Extensive reference is made to the FFT Core data

sheet in appendix 5. Figure 7.6 shows the FFT Core Interface from the data sheet.

A block schematic diagram of the complete simulator design is shown in figure 7.7.

Figure 7.6 1024 point FFT interface pinout

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

70

C
on

tr
ol

POTS Splitter

ADSL Modem (Rx)

Multiplication &
Addition Vectors

ADSL Samples
For Crosstalk

ADSL Samples
For Crosstalk

Multiplication &
Addition Vectors

16-bit ADC
4.416 MSPS

1024 x 2
16-bit Dual
Port RAM

1024 Point

DFT

FPGA

1024 Point

IDFT

FPGA

Processing

FPGA

2048 x 2
16-bit Dual
Port RAM

16-bit DAC
4.416 MSPS

SPROM

SPROM

2048 x 4
16-bit Dual
Port RAM

SPROM

PC

Interface

Line Receiver
Module

4th Order
Smoothing

Filter

Line
Transmission

Module

POTS Splitter

ADSL Modem (Tx)

Figure 7.7 Complete high level simulator design

1024 x 2
16-bit Dual
Port RAM

2048 x 2
16-bit Dual
Port RAM

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

71

7.3.1 FFT Core Input Data Conditioning

The basic FFT Core is used to perform both the DFT on blocks of 1024 ADSL time samples and the

IDFT on blocks of 1024 complex manipulated frequency samples. A new transformation as done each

time sample window on a new set of data samples. Since the same FFT Core design is used for both

DFT and IDFT functions, they will be referred to as the FFT and (I)FFT Core respectively.

7.3.1.1 ADC – FFT Interface

The FFT Core requires input data split into two blocks. For the DFT, the first block, called the

LOBLOCK, consists of time samples t(0) to t(N/2 – 1) and the second, the HIBLOCK, consists of time

samples t(N/2) to t(N –1). The FFT Core reads one data word from each block every two FFTCKs. In

addition, the core requires un-interrupted access to both memory blocks. Because the ADC produces

data at a different rate (once every ADCLK) and in a sequential order, each time windowed group of

1024 time samples from the ADC must be buffered and then read in the order and at the rate required

by the FFT Core during the next window period. This can be achieved by loading the time samples

from the ADC into two blocks of dual port RAM organised into two pages. Whilst data from the

converter is being loaded into one page on one side of the dual port RAM, data from the previous

sampling window in the other page will be read by the FFT Core from the opposite side. During the

next sampling window, data from the ADC is loaded into the second page whilst the core performs the

DFT on the 1024 time samples stored in the first page. This process repeats continuously. Conceptually

this arrangement is shown in figure 7.8.

Each block of each page consists of 512 16-bit wide locations. Practically the block structure can be

implemented using just two 1 kByte dual port RAM chips, one for each block. Shown in figure 7.9,

each block contains 2 pages, page 1 extends from address location 0 to 511 with page 2 from location

512 to 1023.

Dual Port RAMADC
4.416 MSPS

16

16

16

16

16

16

16

FFT
Core

INHI

INLO 16
OUT

Figure 7.8 Conceptual memory arrangement for time sample input to the FFT
Core

LOBLOCK: t(0) to t(511)

HIBLOCK: t(512) to t(1023)

16

16
LOBLOCK: t(0) to t(511)

HIBLOCK: t(512) to t(1023)

PAGE 1

PAGE 2

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

72

A single 9-bit parallel output counter can be used to address both pages at the same time with

appropriate block and page selection control, shown in figure 7.10 with associated digital timing in

figure 7.11. The FFTSTART signal for the FFT Core is generated on the rising edge of the

BLOCKSELECT signal which occurs every 1024 ADCLKs (one time sampling window). All the

supporting logic shown in figure 7.10 can easily fit into the spare capacity of the FPGAs after the Cores

have been placed and routed.

7.3.1.2 IFFT – DAC Interface

The ADC samples at 4.416 MSPS, which is also the rate at which samples must be converted by the

DAC. Since the FFT Core reads its input data at a different rate and in a different order to which the

ADC produced it, memory buffering of the time samples is required. In the same way, the order and

rate of data output from the (I)FFT Core is not sequential and not at 4.416 MSPS, so memory buffering

is also required between the (I)FFT and DAC.

After multiplication and addition, the modified 1024 frequency samples must be stored in a similar two

block arrangement to that for the DFT shown in figure 7.9 to allow the (I)FFT Core un-interrupted

access to its own input data. Here, the LOBLOCK consists of the manipulated complex frequency

samples, f(0) to f(N/2 – 1) and the HIBLOCK the samples f(N/2) to f(N – 1). During each window

period, data output from the (I)FFT Core is written to one side of the dual port RAM, whilst data

written to memory from the (I)FFT Core in the previous window is read out to the DAC from the other

side at 4.416 MSPS and in a sequential order. However, whereas the input to the FFT Core is real

valued only, its output is complex with both real and imaginary parts. The output from the

manipulation block is also complex, therefore the storage space required for the (I)FFT Core input is

double that compared with the FFT Core.

Figure 7.9 Practical memory block and page structure

PAGE 1

PAGE 2

LOBLOCK

0

511

1

512

513

1023

tx(0)

tx(1)

tx(511)

tx+1(0)

tx+1(1)

tx+1(511)

Location HILOCK

PAGE 1

PAGE 2

0

511

1

512

513

1023

tx(512)

tx(513)

tx(1023)

tx+1(512)

tx+1(513)

tx+1(1023)

Location

1024 x 16-bit Dual Port RAM 1 1024 x 16-bit Dual Port RAM 2

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

73

Figure 7.10 Circuit diagram for ADC and FFT Core interface

1 FFTCK

0 1 511 512 1023 1024 1535 1536 2047 2048

ADCLK

BLOCKSELECT

PAGESELECT

FFTSTART

Figure 7.11 Digital timing diagram for ADC and input to FFT Core

232 µs

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Sheet: figure 7.10

Date: 08/20/99

LOBLOCK

RAM1024X16

TEMP

HIBLOCK

RAM1024X16

TEMP

FFT

TEMP

COUNTER

T
E

M
P

DIV1024

TEMP

DIV2

TEMP
OSC17488

TEMP

IN
V

INV

INV

MONO

TEMP

ADCONV

TEMP

ADR[0:8]

ADR[8:0]
ADR0

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

BLOCKSELECT

ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

PAGESELECT

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

FFTCK

ADCLK

FFTSTART

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

74

7.3.2 FPGA Initialisation

During an initialisation period, serial data is transferred from SPROMs to the FPGAs to configure the

devices. Xilinx manufacture specific SPROMs for different sized FPGAs.

7.3.3 PC Interface

Both a complex multiplication vector representing the physical line’s frequency response and complex

addition vectors for noise and crosstalk simulation must be supplied to the processing FPGA during a

simulation run from a controlling PC. The 16-bit 2048 word addition vector (1024 real and 1024

imaginary) must be updated every time sampling window, whereas the same sized multiplication vector

requires loading only once at the start of a simulation run. When a new line is to be simulated, a new

multiplication vector must be downloaded describing the new frequency response. As previously

described, an efficient method to generate self crosstalk is to use a delayed and attenuated copy of the

actual ADSL signal’s DFT itself. To allow complete control of self crosstalk, the complex 1024

computed ADSL frequency samples from the FFT Core should be uploaded to the PC during each time

sampling window, then processed and downloaded as a constituent part of a later addition vector.

Ideally a well defined interface should exist between the simulator board and controlling PC.

Shown previously in figure 7.7, dual port RAM can be used as a store and buffer between the PC

interface and the DFT and processing FPGAs. The RAM used to store both the copy of the ADSL’s

DFT and processing addition vector should operate on a split page mode similar to that described

previously to allow simultaneous read and write operations for consecutive data blocks from opposite

sides of the dual port RAM. The multiplication vector could be stored in single port RAM as only one

download per simulation run is required, but since dual port RAM will be used exclusively elsewhere,

using an identical device will simplify timing and other circuitry.

Much of the device level logic will be very similar in nature to that shown in figure 7.10. To avoid

excessive numbers of circuit level diagrams, only figure 7.7, the high level block diagram of the

complete design is included.

7.3.4 Line Receiver and Transmitter Modules

The output from an ADSL modem will be at voltage levels required for twisted pair transmission. The

final part of a transmitting modem contains an AFE that matches the line and power driver’s

impedance. The first part of a receiving modem will also contain an AFE matching its impedance to

that of the transmission line’s and operate at a suitable sensitivity. The input of the line simulator

should be consistent with that normally seen by a transmitting modem and its output consistent with

that seen by a receiving modem. This requires matching both impedance and signal levels.

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

75

Specific line drivers such as the Analog Devices AD816 differential driver6, designed for use with

ADSL modems, incorporate both transmitter and receiving electronics in a single device and are

suitable for use as the simulator’s line drivers.

7.3.5 ADC and DAC Converters

Both ADC and DAC must generate and convert parallel 16-bit data vectors. Two Analog Devices

converters, the AD9240-EB DAC at £135 and AD768-EB ADC at £104 are both available on fully

populated evaluation boards from the supplier SEI Millenium. The use of evaluation boards obviously

reduces the design time, as board layout and interface circuitry is already optimised by the

manufacturer.

7.3.6 DAC Output Filtering

Between the output from the DAC and line driver, filtering is necessary. From the scant available

details of ADSL modems and AFEs, typically these filters are fourth order with cutoff frequencies of

approximately 1.2 MHz7,8. Because receiving ADSL modems incorporate high order anti-aliasing

filters with similar performance, there is no problem in limiting the spectral output from the simulator

to 1.2 MHz with smoothing filters as anything above this is effectively removed by the receiving AFE

before any A/D conversion takes place in the receiving ADSL modem.

For simplicity, a fourth order analogue Butterworth filler implemented using fast op-amps will be used

to filter the DAC’s output in the line simulator.

Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

76

References

1 Texas Instruments, TMS320C6701 Data Sheet SPRS067, May 1998.
 Texas Instruments, TMS320C67x Single Precision Floating Point Assembly Benchmarks, May 1998.
 Texas Instruments, TMS320C6202 Data Sheet SPRS072A, January 1998.
 Texas Instruments, TMS320C62x Assembly Benchmarks, May 1998.

2 Analog Devices, “A New Architecture for the Digital Convergence Infrastructure”, TigerSHARC
 DSP Product Preview and Benchmarks, June 1999.

3 Motorola, DSP56600 DSP Benchmarks, November 1996.

4 SEI Macro Group Ltd, Component Quotation, 26th March 1999.

5 “Estimating the Preformance of XC4000E Adders and Counters”, Xilinx Application Note XAPP
 018, Xilinx, July, 1996.

6 Analog Devices, AD816 500 mA Differential Driver & Dual Low Noise (VF) Amplifiers, Data Sheet,
 1996.

7 ST Microelectronics, STLC60135 TOSCA ADSL DMT Transceiver, Data Sheet, May 1998.

8 Fujitsu Microelectronics UK Ltd, MB86626 Keywave ADSL AFE, Data Sheet, December 1998.

