
Andrew Wilkinson
awilkinson@totalise.co.uk

http://www.users.totalise.co.uk/~awilkinson/index.html

MSc Telecommunications

August 1999

Dr. Phil Lane

A Feasibility Study and Initial Design

ADSL / VDSL Line Simulation



Abstract

This dissertation describes an MSc project to investigate the feasibility of building a digital hardware

line simulator for use as ADSL and VDSL test environments during modem development. The

simulation requirement interms of crosstalk, noise and the physical line effects of twisted copper access

pairs at DSL frequencies are determined. A simulation model using both time and frequency domains is

brought forward with suitable DFT parameters calculated. Modelling of the physical line’s attenuation

and phase shift through frequency domain filtering is developed. Two practical ADSL line simulator

implementation paths using DSP and FPGA devices are evaluated according to five performance and

development metrics. Initial high level and revised logic level designs are undertaken using Xilinx

FPGAs and FFT modules. Functionality is tested and performance evaluated using Xilinx Foundation

software. Finally, future adaptability to VDSL line simulation is discussed. 44 references included.



Preface

The aim of this MSc project was to investigate the possibility of constructing a compact PC controlled

hardware line simulator suitable for replacing the traditional twisted copper pair access cable as a test

environment for ADSL and VDSL modems under design. The dissertation covers a wide range of

subjects, ranging from investigation of the copper pair at DSL transmission frequencies, through to an

in depth low-level initial design based on Xilinx FPGAs.

The main areas of the dissertation cover:

• The behaviour of the twisted copper pair at DSL frequencies in chapters 2 and 3.

• Simulation requirements and suitable signal processing methods in chapters 4 and 5.

• ANSL DMT ADSL signal modelling using Matlab in chapter 6.

• High level designs for ADSL simulators comparing DSP and FPGA solutions in chapter 7.

• A revised high level design using FPGA processing blocks in chapter 8.

• In depth low-level logic circuitry and functionality testing of the revised design using the latest

Xilinx FPGAs in chapter 9.

• Possible extension to VDSL line simulation in chapter 10.

The low-level logic designs in chapter 9 assume the reader is conversant in designing Xilinx FPGAs

using the Foundation design environment and includes complex logic designs without step by step

explanation of their operation which is secondary to the aim of the project and dissertation. Included on

the CD ROM are all Foundation schematic, simulation and waveform files associated with all the

circuits of chapter 9.

In addition to the project design files for use in the Xilinx Foundation environment, the CD ROM also

includes full data sheets in PDF format of all devices mentioned, as well as pertinent DSL tutorials

from various sources and the latest Xilinx Foundation upgrade files necessary for the design. In order

to compile and run simulations on the project designs, a minimum of 128 Mbytes of RAM is required,

otherwise excessive hard disk activity occurs with the associated extended processing times.



3

Contents

Abstract 1

Preface 2

1 Introduction  12

2 The Twisted Copper Pair 15

2.1 Physical Line Characteristics 15

2.1.1 RLCG Characteristics at Extended Bandwidths 16

2.1.2 Propagation Constant and Characteristic Impedance 16

2.1.3 Insertion Loss 17

2.2 Crosstalk in ADSL and VDSL Systems 19

2.2.1 Additive Nature of Crosstalk 21

2.3 Guassian, Coloured and Impulsive Noise 22

3 ADSL / VDSL Technologies 23

3.1 ADSL 23

3.1.1 ADSL General Architecture 24

3.1.2 DMT Modulation 25

3.1.2.1 ANSI T1.413 DMT Specification 28

3.1.2.2 DMT Frequency Division Multiplexed ADSL 29

3.1.2.3 ADSL Lite 29

3.1.2.4 DMT Echo Cancelled ADSL 29

3.1.3 CAP Modulation 30

3.2 VDSL 31

3.3 ADSL and VDSL Data Rates and Reach 32

4 Line Simulator Requirements 34

4.1 Physical Line Characteristics 34

4.1.1 Insertion Loss 34

4.1.2 Phase Shift 36

4.1.3 Acceptable Phase and Magnitude Variations 38

4.2 Crosstalk 39

4.3 AGWN, Impulsive and Coloured Noise 39

4.4 ADSL Line Simulator Requirements 39



Contents Andrew Wilkinson

4

4.4.1 DMT ADSL 39

4.4.1.1 Transform Requirements due to Insertion Loss 40

4.4.1.2 Transform Requirements due to Phase Shift 40

4.4.1.3 Overall Transform Requirements 41

4.4.2 CAP ADSL 41

4.5 VDSL Line Simulator Requirements 41

4.6 Summary of Transform Requirements 42

5 Signal Processing Fundamentals 43

5.1 The Modelling Requirement 43

5.2 Signal Domains 44

5.2.1 Physical Line Effects 44

5.2.2 Crosstalk 46

5.2.3 Noise 47

5.2.3.1 Additive Gaussian White Noise 47

5.2.3.2 Coloured Noise 47

5.2.3.3 Impulsive Noise 48

5.2.4 Overall Simulation Model 48

5.3 Discrete Fourier Transform Specifics 50

5.3.1 DMT ADSL Fast Fourier Transform 51

5.3.2 CAP ADSL Fast Fourier Transform 51

5.3.3 VDSL Fast Fourier Transform 51

5.4 A/D and D/A Conversion 51

5.4.1 Theoretical ADC and DAC Precision 52

5.4.1 Practical ADC and DAC Precision 52

6 Matlab ADSL Signal Models and Transform Verification 54

6.1 QAM Signal Generation 54

6.1.1 Baseband QAM 55

6.1.2 Passband QAM 56

6.1.3 Extension to DMT 57

6.2 Sampling 57

6.3 Filtering 58

6.4 Basic Transform Verification 58

6.5 Extension to ‘Simulator’ Simulation 59

7 Initial ADSL Line Simulator Design 60

7.1 Line Simulator Block Functionality 60

7.2 Frequency Filter and FFT Implementation 62

7.2.1 Implementation Using DSPs 63

7.2.1.1 Speed Metric 63

7.2.1.2 Chip Packaging 64

7.2.1.3 Prototyping and Production Costs 65

7.2.1.4 Versatility 65

7.2.1.5 Future Adaptability to VDSL Line Simulation 65



Contents Andrew Wilkinson

5

7.2.2 Implementation Using FPGAs 66

7.2.2.1 Speed Metric 66

7.2.2.2 Chip Packaging 68

7.2.2.3 Prototyping and Production Costs 68

7.2.2.4 Versatility 68

7.2.2.5 Future Adaptability to VDSL Line Simulation 69

7.2.3 Preferred Implementation 69

7.3 Overall Line Simulator Design 69

7.3.1 FFT Core Input Data Conditioning 71

7.3.1.1 ADC – FFT Interface 71

7.3.1.2 IFFT – DAC Interface 72

7.3.2 FPGA Initialisation 74

7.3.3 PC Interface 74

7.3.4 Line Receiver and Transmitter Modules 74

7.3.5 ADC and DAC Converters 75

7.3.6 DAC Output Filtering 75

8 Revised ADSL Simulator Design 77

8.1 Overall Revised Simulator Design 77

8.2 Xilinx Reference FFT Design 79

8.2.1 FFT Reference Design I/O and Control Timing 81

8.3 Internal Memory Interfaces 81

8.3.1 Memory Interfaces – Justification 81

8.3.1.1 ADC – FFT FPGA Interface 83

8.3.1.2 FFT – Frequency Manipulation FPGA Interface 83

8.3.1.3 Frequency Manipulation – IFFT FPGA Interface 83

8.3.1.4 IFFT – Time Manipulation FPGA Interface 83

8.3.1.5 Time Manipulation FPGA – DAC Interface 84

8.3.2 Practical Memory Implementation 84

8.3.3 Memory Interfaces for PC I/O 85

8.3.4 Page Addressing for Memory Interfaces 86

8.4 Processing Operations’ Timing 87

8.5 Analogue Front Ends 89

9 Detailed Low Level Design and Functional Testing 90

9.1 FFT FPGA 90

9.1.1 Peripheral Circuit Requirements 92

9.1.2 Logic Design 92

9.1.3 FFT FPGA Design Verification 92

9.1.3.1 FFT Reference Design Control Timing 94

9.1.3.2 FFT Reference Design Discrete Fourier Transform 94

9.1.3.3 Input RAM Addressing and Control 95

9.1.4 FFT Performance 96

9.1.5 IFFT FPGA 96

9.2 Frequency Manipulation FPGA 97



Contents Andrew Wilkinson

6

9.2.1 Peripheral Circuit Requirements 97

9.2.2 Logic Design 98

9.2.2.1 Arithmetic Functions 98

9.2.2.2 Timing Functions 98

9.2.3 Functionality Testing and FPGA Placement 102

9.2.4 Performance 102

9.3 Time Manipulation FPGA 102

9.3.1 Peripheral Circuit Requirements 102

9.3.2 Logic Design 103

9.3.2.1 Arithmetic Functions 103

9.3.2.2 Timing Functions 103

9.3.3 Functionality Testing 103

9.4 Clock and Page Select Circuitry 103

9.4.1 Clock Signals 103

9.4.2 Memory Interface Paging 108

9.5 Memory Chips 108

9.5.1 Interface Memory 108

9.5.2 FFT / IFFT Scratchpad memory 109

9.6 Low Level Design Summary 109

10 Conclusions 111

10.1 The Modelling Requirement 111

10.1.1 Physical Line Effects 111

10.1.2 Crosstalk and Noise 113

10.2 Signal Processing Methods 113

10.3 DFT Requirements 114

10.4 Implementation Paths 115

10.5 ADSL Line Simulation Using FPGAs 116

10.6 Further Work 116

10.7 Towards a VDSL Line Simulator 117

Appendix 1 Calculation of Magnitude and Phase Characteristics of 26 Gauge 119

       PIC Twisted Copper Pairs

Appendix 2 Matlab Version 5 ginput Function 121

Appendix 3 KeyWaveTM AFE (Product Preview) 122

Appendix 4 Xilinx FPGA Core Functions 125

Appendix 5 1024 Point FFT, Multiplying and Addition FPGA Cores 128

Appendix 6 Xilinx 1024 Point High Performance FFT Reference Design Data Sheet (pp1-4) 139

Appendix 7 E-mail correspondence with the author of the 1024 FFT Reference Design,

      Dr. Chris Dick of Xilinx 144



7

List of Figures

Chapter 2

Figure 2.1 Primary PIC twisted pair parameters 16

Figure 2.2 Insertion loss for 26 gauge PIC copper pair 18

Figure 2.3 Phase shift for 26 gauge PIC twisted copper pair 18

Figure 2.4 Phase shift for 26 gauge PIC copper pair over ADSL bandwidth 19

Figure 2.5 Common mode operation 20

Figure 2.6 Differential mode operation 20

Figure 2.7 Near End CrossTalk 20

Figure 2.8 Far End CrossTalk 21

Figure 2.9 Mythical DSL power spectra 21

Chapter 3

Figure 3.1 ADSL end to end model 24

Figure 3.2 QAM modulation of a sine and cosine carrier 25

Figure 3.3 QAM constellation for a sine + cosine symbol 26

Figure 3.4 Complete 4 QAM constellation 26

Figure 3.5 3 bin DMT modulation 27

Figure 3.6 ANSI T1.413 carrier spacing and PSDs 28

Figure 3.7 PSD mask for ANSI T1.413 FDM DMT ADSL 29

Figure 3.8 PSD mask for CAP ADSL 30

Figure 3.9 DMT / CAP power spectra comparison 31

Figure 3.10 VDSL spectral spreads 32

Figure 3.11 VDSL data rates and reach 32

Chapter 4

Figure 4.1 Insertion loss range 35

Figure 4.2 Insertion loss for 12 kft twisted copper pair with overlay grid showing the first

Relevant frequency transform interval 36



List of Figures Andrew Wilkinson

8

Figure 4.3 Detailed phase response for 26 gauge pairs 38

Chapter 5

Figure 5.1 Time and frequency domain description of transmission process 44

Figure 5.2 Magnitude and controlled 90° phase shift of a single tone 45

Figure 5.3 Magnitude and controlled arbitrary phase shift of a single tone 46

Figure 5.4 Frequency and time domain crosstalk modelling 47

Figure 5.5 Impulsive noise waveform 48

Figure 5.6 Impulsive noise modelling 48

Figure 5.7 Overall simulation method 49

Figure 5.8 DFT and radix 2 FFT multiplication comparison 50

Chapter 6

Figure 6.1 Illustrative cosine and sine carrier amplitudes for QAM 55

Figure 6.2 QAM signals produced by the Matlab function qamdef 56

Figure 6.3 Sampled QAM signal produced by the Matlab function sampfreq 57

Chapter 7

Figure 7.1 ADSL line simulator functional block diagram 61

Figure 7.2 Hybrid DSP / FPGA solution 64

Figure 7.3 XC4000E chip speeds 67

Figure 7.4 XC4000XLA chip speeds 67

Figure 7.5 Multiplication by coefficients < 1 67

Figure 7.6 1024 point FFT Core interface pinout 69

Figure 7.7 Complete high level simulator design 70

Figure 7.8 Conceptual memory arrangement for time sample input to the FFT 71

Figure 7.9 Practical memory block and page structure 72

Figure 7.10 Circuit diagram for ADC and FFT Core interface 73

Figure 7.11 Digital timing diagram for ADC and input to FFT Core 73

Chapter 8

Figure 8.1 Revised ADSL line simulator block diagram 78

Figure 8.2 FFT Reference Design pinout diagram 79

Figure 8.3 Timing diagram for FPGA FFT I/O, ADC and DACs 80

Figure 8.4 Conceptual memory page structure for ADC, DAC, FFT, IFFT and

Manipulation FPGAs 82



List of Figures Andrew Wilkinson

9

Figure 8.5 32-bit memory interface page structure for real and imaginary data vectors 85

Figure 8.6 16-bit memory interface page structure for real valued data vectors 85

Figure 8.7 Page addressing for 2 k-word dual port RAM 86

Figure 8.8 Digital timing diagram for memory page selection from the ADC clock 87

Figure 8.9 Independent operation timing for all six operations over a period of 6 time

sampling windows 88

Figure 8.10 KeyWave pinout diagram 89

Chapter 9

Figure 9.1 FFT additional control circuitry for time data input from the ADC – FFT

memory interface 91

Figure 9.2 Complete FFT transform engine design 93

Figure 9.3 Frequency manipulation addressing and read / write strobe 97

Figure 9.4 Frequency manipulation arithmetic functions 99

Figure 9.5 Frequency manipulation addressing and timing functions 100

Figure 9.6 Frequency manipulation complete circuit 101

Figure 9.7 Time manipulation arithmetic functions 104

Figure 9.8 Time and frequency manipulation complete circuit 105

Figure 9.9 External global clock generation 106

Figure 9.10 Memory interface paging circuitry 107

Chapter 10

Figure 10.1 Insertion loss for 26 gauge PIC twisted copper pair 112

Figure 10.2 Phase shift for 26 gauge PIC twisted copper pair over ADSL bandwidth 112



10

List of Tables

Chapter 3

Table 3.1 ADSL performance figures 24

Table 3.2 4 QAM bit to carrier amplitude mapping 26

Table 3.3 VDSL performance targets 31

Chapter 4

Table 4.1 Maximum insertion losses 35

Table 4.2 Insertion loss for various frequency transform resolutions 37

Table 4.3 Full phase rotation bandwidths for 26 gauge pairs 38

Table 4.4 DMT ADSL simulator transform requirements considering a maximum 10%

Insertion loss variation across the first relevant transform cell 40

Table 4.5 DMT ADSL simulator transform requirements considering phase shift 40

Table 4.6 Overall ADSL and VDSL simulation transform requirements 41

Chapter 7

Table 7.1 FFT execution times on various DSP architectures 63

Table 7.2 DSP packaging options 64

Chapter 8

Table 8.1 Memory interface physical RAM implementations 84

Chapter 9

Table 9.1 Pre and post place and route FFT performance 96

Table 9.2 Suitable memory interface devices 109



List of Tables Andrew Wilkinson

11

Chapter 10

Table 10.1 FFT Transform Parameters 115



12

Chapter 1

Introduction

Only a few years ago, even the most enlightened telecommunication’s engineer might ask:

“Is there a need for a hardware simulator to model a fixed access twisted copper pair?”

For voice, fixed line access is a mature technology. Ever since telecommunication networks employed

switching, subscribers have been connected to the network operator’s closest switch via an access

network, usually consisting of a single twisted copper or aluminium pair of wires. In the UK alone, the

incumbent telco, BT, has over 36 million subscriber pairs. It is therefore reasonable to question if there

is a need for a hardware system to simulate the behaviour of a twisted copper pair. Such a widely

deployed, mature technology, should be fully understood? Yes and no. The key to this question is

bandwidth. Access technology over the last century has provided a perfectly adequate 4 kHz low

bandwidth service dedicated to analogue voice conveyance. Since the mid 1980s, personal computers

have increasingly pervaded residential homes. Initially, home computing was informationally isolated

from the outside world, with data transfer only through removable magnetic media. The 1990s

witnessed a major change in the way in which home computers were used. The widespread growth of

the ‘Internet’ and particularly the development of Graphical User Interfaces (GUIs) such as Netscape

and Microsoft’s Internet Explorer fuelled a revolution in the way home users viewed their PCs. These

developments projected the PC from a useful and entertaining novelty almost to the point of a ‘must

have’ gateway to the outside world.

The increase in CPU speeds and the reduction in volatile and permanent memory storage costs have

stretched the PC’s capacity from manipulation of essentially text-based information to the arena of

‘multimedia’. Whereas text-based data transfers can be satisfied by low bit rate transmission,

multimedia applications such as real time video transfer and other interactive services require high bit

rates for an acceptable Quality of Service (QOS). Even non-real time multimedia data transfers of items

such as pictures require high transmission bit rates to give acceptable download times for end users.

Consider a large e-mail of several hundred words, approximately 1 kilobyte in size. Using a standard



Chapter 1 Introduction Andrew Wilkinson

13

56 kbit/s modem, the e-mail could be downloaded within a second. Now consider the same e-mail with

an enclosure of a single high quality 1 Megabyte bit map image. Using the same modem, the e-mail

could take more than two and a half minutes to download!

The existing access network provided the logical choice to connect PCs to the outside world,

commonly referred to as connecting to the Internet. However, this choice was driven mainly by cost

and convenience – a computer engineer would never have opted for a 4 kHz band limited analogue

drop cable to the nearest digital switching unit given a blank piece of paper! Although not ideal, by

using multilevel Quadrature Amplitude Modulation (QAM) signalling, modem engineers have

managed to squeeze transmission rates upto a maximum of 56 kbit/s through the analogue access

network with no modifications to its structure. 56 kbit/s provides fast enough transmission for most text

based applications, but not multimedia, hence methods were needed to provide higher bit rates.

One solution for providing home users with greater data rates is to digitise the access loop. The

Integrated Services Digital Network offers data rates of upto 144 kbit/s, with 128 kbits/s reliably

available to the end user. ISDN is a great improvement over analogue modem systems, especially since

it offers a reliable service - the data rate offered by all ISDN lines is always 128 kbits/s, whereas

analogue modems rarely achieve their maximal throughput and what is provided is unreliable in that it

may vary during the holding time of a data connection. Although an improvement, 128 kbits/s isn’t

really enough for multimedia applications and is an expensive solution considering the gain in bit rate.

Both ISDN and analogue QAM modems use baseband transmission. DSL modems employ passband

transmission by modulating data onto carrier frequencies much higher than the spectrum occupied by

analogue voice signals. The expansion of the Power Spectral Density (PSD) mask over baseband

transmission introduces new behaviour which DSL modems must accommodate. Classically, twisted

copper access pairs used in voice telephony are fully characterised by their transmission performance

and signalling resistance. The transmission performance, measured in dB, is the maximum signal

attenuation before the level of extraneous noise becomes unacceptable to the customer. On residential

lines a figure of 10 dB is a common upper limit. The signalling resistance is the resistance seen by

signalling (dial tone, ringing etc). The maximum allowable signalling resistance is of the order of a kilo

Ohm. Over the broader utilised spectrum, the line’s frequency response exhibits much greater variation

and with higher frequency operation, the effects of crosstalk from other high bit rate lines becomes

very significant and prevents the line from being viewed in isolation.

The susceptibility to crosstalk at higher frequencies is the core driver for a DSL line simulator. DSL

modem designers such as Fujitsu have difficulty in recreating a realistic test line for evaluating their

equipment. To test baseband modems operating to a few tens of kHz, coiled reels of access cables are

used which provide an adequate test environment because the signals are affected mainly by the lines

low frequency transmission performance. When differential transmission with twisted copper pairs is

employed the crosstalk from neighbouring access pairs within the same bundle is negligible. For voice

band QAM modems, the transmission rate is predominately limited by noise and insertion loss.

Essentially the line under test can be viewed in isolation from similar neighbouring call carrying lines.

Coiled bundles of access pairs cannot be used for testing DSL modems as the close coiling of the same

line induces self crosstalk, so designers are forced to use long runs of stretched out cable in a fashion

similar to real life to avoid self self-crosstalk due to the signal under test. Additionally, crosstalk from



Chapter 1 Introduction Andrew Wilkinson

14

neighbouring DSL lines is significant and is often the limiting factor to the modem’s achievable bit

rate. With a physical test line, a designer must inject interfering DSL signals along other copper pairs

within the same access bundle in order to recreate a realistic test environment. On a real physical access

bundle, this is both difficult and expensive to do and time consuming to alter the test environment.

A compact PC based line simulator that simulates both the physical line characteristics throughout the

transmission spectrum and the effect of crosstalk from neighbouring DSL lines within the same

theoretical access bundle is therefore very desirable. Significantly, once the test environment is under

PC control it can be instantly reconfigurable both interms of the physical line characteristics and

crosstalk.

The aim of this project is to investigate both the technical and commercial feasibility of making a line

simulator for use with Very high bit rate Digital Subscriber Line (VDSL) and Asymmetrical Digital

Subscriber Line (ADSL) modems.



15

Chapter 2

The Twisted Copper Pair

Twisted pair channels are noisy, lossy and prone to crosstalk. Both ADSL and VDSL modulation

schemes are designed to overcome or reduce the effects of these impairments. Before any simulator

design can be considered, a thorough understanding of the transmission environment in which ADSL

and VDSL modems operate is essential. Due to the extended PSD of both modulation schemes into the

MHz region, both physical line characteristics and crosstalk susceptibility are considerably different to

that experienced for voice band communication on the same channel. This chapter will briefly look at

physical line characteristics of twisted copper pairs into the MHz region and the nature of crosstalk

specific to ADSL and VDSL systems.

2.1 Physical Line Characteristics

It is important to realise that access loops between a LEX and a customer’s premises generally do not

consist of a single long uniform conductive pair, but rather of a series of spliced lengths of pairs

increasing in diameter towards the subscriber1. Due to this, the insertion loss of the access loop is

generally not monotonically increasing with reach towards the subscriber and is also subject to abrupt

splicing losses in addition to the cumulative losses upto that point. The nature of the access loop must

be considered for future work in developing models for software to drive a hardware simulator.

Any transmission line can be described in terms of its physical characteristics of resistance, inductance,

capacitance and admittance, known as the primary RLCG parameters. For the lowpass voice spectrum

of 4 kHz, RLCG parameters are constant for normal gauge access pairs such as 24 and 26 gauge wire.

At higher frequencies above a hundred kHz or so, the pair’s resistance, inductance, capacitance and

admittance vary significantly with frequency



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

16

2.1.1 RLCG Characteristics at Extended Bandwidths

Figure 2.1 shows the typical RLCG characteristics of a 1000 thousand foot (1 kft) twisted copper pair

of plastic insulation coated (PIC) 24 and 26 gauge wire, generated by Matlab using cubic spline

interpolation to published data2. The variation in resistance, inductance and admittance is clearly seen

at frequencies above 100 kHz. Although primary RLCG parameters give an insight into the basic

behaviour of a twisted copper pair at higher frequencies, two more useful transmission line parameters

are defined. The propagation constant and characteristic impedance of the line enable the voltage and

current at any point along the line and hence the insertion loss and phase shift due to any length of

twisted copper pair to be determined.

2.1.2 Propagation Constant and Characteristic Impedance

Any termination design will attempt to match the terminating impedance with the line impedance for

maximum possible power transfer to the receiver. For a matched line and termination impedance, the

voltage at any point ‘x’ from the source is given by

Figure 2.1 Primary PIC twisted pair parameters



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

17

In terms of a transfer function from source to termination,

The γ term is the propagation constant and is related to the primary line characteristics by

From the primary line parameters, below 100 Mhz  jωC >> G, therefore the propagation constant can

be approximated to

Since jωL > R in the spectrum of interest,

Thus

The resistance increases proportionally to the root of frequency due to the skin effect and the line

capacitance is constant. Although the pair’s inductance varies approximately 30% between 100 kHz

and 10 MHz, if as a first approximation it is assumed to be constant, the frequency dependence of the

propagation constant is given by:

Where the constants α0 and β0 are related to the primary line parameters. C, L and R.

2.1.3 Insertion Loss

The main reason for deriving a theoretical expression for the characteristic impedance in terms of the

propagation constant is to determine what behaviour a DSL line simulator must simulate due to the

physical line effects. The line’s transfer function can be considered in terms of magnitude and phase,

allowing the insertion loss in decibels and the associated phase shift for sinusoids throughout the

relevant DSL spectrum to de determined. Over a typical range of access spans, figures 2.2 and 2.3

( )( )CjGLjR ωωγ ++=









+= 1

Lj
R

LCj
ω

ωγ









+≈








+ 11

Lj
R

Lj
R

ωω

LCj
L
C

R ωγ +=

fxefVxfV γ−= )(),( 0

ff 0
2/1

0 βαγ +=

fxe
fV
xfV

fH γ−==
)(

),(
)(

0



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

18

show the analytic insertion loss and associated phase shift derived above, for 26 gauge twisted copper

pairs up 10 MHz.  All graphs were generated by Matlab using the primary RLCG parameters shown in

figure 2.1 (see appendix1 for further details).

As will be discussed later, the simulator’s required DFT resolution is critically dependent on the range

of the variation of insertion loss and phase over the DSL bandwidth.

As can be seen from the bode plot of phase, there is zero phase shift over the voice band, but above 100

kHz the phase response changes rapidly. Figure 2.4 shows linear plots of phase response over the

ADSL bandwidth of 1 MHz for the proposed extremes of ADSL system reach.

Although these graphs are derived from approximations, experimental work3 indicates the analytic

results adequately model the access line’s insertion loss and phase response over the ADSL bandwidth.

Figure 2.2 Insertion loss for 26 gauge PIC twisted copper pair

Figure 2.3 Phase shift for 26 gauge PIC twisted copper pair



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

19

2.2 Crosstalk in ADSL and VDSL Systems

Alexander Graham Bell patented the first use of twisted copper pairs in 1881 to alleviate the effect of

crosstalk between neighbouring wires within an access bundle. Until this time, multiple conductors

with a single shared ground line were common. Unacceptable levels of crosstalk in access bundles of

only a few hundred metres in length were often encountered. Later, this type of scheme was termed

common mode signal transmission where the driving signal is applied between the common ground and

conductor. As such, any nearby signal carrying conductor, called a disturbing source, electro-

magnetically induces voltages in other signal carrying wires differently to that induced in the physically

different and spatially separated common ground. Clearly at the access termination, the earpiece, a

potential difference will exist between the ground and conductor due to the disturbing signal –

crosstalk. The twisted copper pair operates in differential mode where only a difference in potential

between the two conductors causes a current to flow. There is essentially no difference in the em field

from the disturber, but the two conductors are now subject to the same disturbance so they will

experience an identical common change in their potential relative to some absolute ground but not to

each other. At the earpiece termination there is no difference in potential across the pair, so no power is

dissipated in the earpiece due to the disturber. The disturbing crosstalk has been rejected by the

differential operation of the pair of wires. In other words, twisted copper pairs give rise to common

mode rejection of disturbing signals.  Figures 2.5 and 2.6 show common mode and differential

operation of transmission lines.

Figure 2.4 Phase shift for 26 gauge PIC twisted copper pair over ADSL bandwidth



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

20

If twisted pairs reject common mode signals doesn’t that imply crosstalk is eliminated at any

frequency? Unfortunately due to the phenomena of capacitive and inductive inbalance4 between

different pairs along the length of the access bundle, differential crosstalk still occurs in twisted copper

pairs.

Although the actual method through which crosstalk is induced is more important when considering

how to generate model crosstalk for use in a simulator rather than directly in the design of the simulator

hardware itself, some basic understanding is required inorder to adequately provision a simulator to

copy crosstalk induction on twisted copper pairs. In any discussion on crosstalk, several definitions of

different types of crosstalk are made which include:

• Self crosstalk from similar access signals (e.g. ADSL crosstalk to ADSL lines)

• Foreign crosstalk from different access signal (e.g. ISDN crosstalk to VDSL lines)

Both self and foreign crosstalk can be caused by sources located at

• the same end of an access bundle, termed Near End CrossTalk (NEXT)

• the opposite end of an access bundle, termed Far End CrossTalk (FEXT)

Figures 2.7 and 2.8 show NEXT and FEXT.

Termination

Access Bundle

NEXT

Modems Data Switch

Figure 2.7 Near End CrossTalk

Figure 2.6 Differential mode operation

Source Termination

Figure 2.5 Common mode operation

Source



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

21

The effect of crosstalk on different modulation schemes is dependent mainly on the PSD relationship

between the disturbed and disturbing signals5, discussed further in subsequent chapters. To clarify this,

consider the case of mythical ZDSL and YDSL disturbers inducing crosstalk in a QDSL signal which

have the PSDs shown in figure 2.9.

The PSDs of the QDSL and ZDSL signals don’t overlap, therefore in the absence of non-linear

intermodulation distortion and perfect out of band noise rejection, crosstalk from the ZDSL disturber

will have no affect on the Bit Error Rate (BER) of the QDSL signal after demodulation.  This is in

contrast to the PSDs of the QDSL and YDSL signals, which show significant overlap. Crosstalk from a

YDSL signal will have a significant impact on the BER of the QDSL signal.

2.2.1 Additive Nature of Crosstalk

Regardless of the type of crosstalk that a signal is subject to (e.g. Self NEXT, Foreign FEXT etc), the

induced crosstalk power in a signal carrying pair is, like noise, fundamentally additive. In the absence

of non-linear effects, a monotone disturber at frequency f1 will induce crosstalk noise in other pairs at

the same frequency f1. This is an important property of crosstalk, which will be invoked to allow its

simulation in the hardware design.

Figure 2.9 Mythical DSL power spectra

FEXT

Access Bundle

Modems Data Switch

Figure 2.8 Far End CrossTalk



Chapter 2 The Twisted Copper Pair Andrew Wilkinson

22

Although more relevant to further work on the development of software models to drive the hardware

simulator, when modelling the effect of crosstalk from multiple disturbers, one must take a statistical

approach. Crosstalk models exist which predict both NEXT and FEXT for a single disturber. These can

be extended statistically to model multiple disturbers, but not by simply summing of the effect from

each individual disturber6. For example, to model the effect of two similar disturbers one cannot just

double the results from a model of one disturber

2.3 Guassian, Coloured and Impulsive Noise

As with all telecommunication systems, Additive Guassian White Noise (AGWN) and impulsive noise

from sources such as switching equipment is present in DSL systems.  In the extended spectra of DSL

signals other important noise sources are present due to high frequency em radiation. Noise from

bandlimited radio communication systems often falls within DSL spectra. A common example is

Amateur Radio transmission, which has a PSD within the Discrete Multi-Tone (DMT) ADSL PSD.

Such noise of often termed coloured noise and as with crosstalk, AGWN and impulsive noise are

additive.

References
                                                       
1 American National Standards Institute, Asymmetric Digital Subscriber Line Metallic Interface

Standard, T1.413, August 1995.

2 Walter Y. Chen, “DSL”, Macmillan, 1998, p54-58.

3 Harold Hughes, “Telecommunications Cables”, Wiley,  1997, p114-120.

4 Denis J. Rauschmayer, “ADSL / VDSL Principles”, Macmillan, 1999, p44-53.

5 Denis J. Rauschmayer, “ADSL / VDSL Principles”, Macmillan, 1999, p89-130.

6 Walter Y. Chen, “DSL”, Macmillan, 1998, p64-67.



23

Chapter 3

ADSL / VDSL Technologies

Both ADSL and VDSL are designed to operate on a subscriber’s existing twisted copper access pair

terminating at a Local Exchange Building (LEX) in conjunction with the existing Plain Old Telephone

Service (POTS). Various types of both ADSL and VDSL exist or are under development, although

only DMT ADSL has been standardised1. Dual operation alongside the POTS is achieved through

frequency division multiplexing which supports the legacy unmodulated baseband voice service upto 4

kHz and modulated data transmission in a higher passband. Filters known as POTS splitters separate

the two signals at both the customer’s premises and LEX. ADSL offers asymmetrical data rates of upto

6 Mbps downstream and 768 kbps upstream, whilst VDSL will offer either symmetrical or

asymmetrical transmission to a combined limit of 55 Mbps. The maximum achievable data rate for

both systems is limited by reach and SNR. This chapter attempts to describe both DSL systems, but

only to a level that the salient points related to a line simulator are brought out, not exhaustively. Where

further detail is sought, reference texts are identified.

3.1 ADSL

ADSL is aimed at providing data rates from 1.5 to 6 Mbps downstream and upto 768 kbps upstream2.

For a given data rate the maximum separation between the customer and LEX is limited by attenuation

and SNR due to crosstalk and other noise. Simply, higher data rate lines have a shorter reach compared

with lower rate lines as have lines with thinner conductors compared with thicker ones. As will be

discussed shortly, two different ADSL modulation schemes exist which have slightly different

performance objectives, but Table 3.1 gives an indication of approximate maximum and minimum

ADSL performance for uniform, untapped access lines3.



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

24

AWG Maximum Reach Maximum Rate

24

18 kft

@

1.5 Mbps

6.1 Mbps

@

12 kft

26

15 kft

@

1.5 Mbps

6.1 Mbps

@

9 kft

3.1.1 ADSL General Architecture

Practical deployment of ADSL to a new subscriber has been kept as simple as possible. No access line

modifications are necessary, although a DSL service provider generally surveys the line to determine

its length and condition and to determine the maximum possible data rate that it will support. A recent

variation of ADSL is DSL Lite4 which is designed to make the installation of a POTS splitter at the

customer’s premises obsolete allowing an ADSL Lite modem to be plugged into the existing phone

socket as simply as a common 56 k PC analogue modem. DSL Lite, although not yet standardised, will

use the same modulation scheme as DMT ADSL, but offer a reduced data rate.

Figure 3.1 shows the end to end model for full ADSL systems, for ADSL Lite, the customer’s POTS

splitter would be removed.

LEXAccess BundleCustomer’s Premises

POTS splitter POTS splitter

ADSL Modem

Data Switch

Voice Switch

Figure 3.1 ADSL end to end model

Table 3.1 Downstream ADSL performance figures



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

25

3.1.2 DMT Modulation

The DMT ADSL modulation scheme is currently the only open standardised version of the access

technology. ANSI have standardised all aspects of the service through the T1.413 series of documents.

Full duplex operation is achieved either by Frequency Division Multiplex (FDM) or Echo Cancellation

(EC), but both methods utilise the same basic multiple carrier QAM scheme.

QAM basically modulates data onto two orthogonal sine and cosine carriers of the same frequency. In

its simplest form, 4 QAM, there are four possible combinations of the two carriers’ amplitudes in the

modulation scheme. 4 QAM modulates two binary bits per transmitted symbol (the symbol is

transmitted through the combination of the two carriers for a duration called the symbol period). A

succession of symbols in time is modulated by changing the amplitude of the two carriers according to

the data bits’ mapping onto the QAM constellation. The nature of the transition from one point to

another in the constellation defines the bandwidth required by the modulation scheme. An

instantaneous change from one point in the constellation to another produced by driving the modulator

with a square wave would require an infinite transmission bandwidth. A modulating signal in the form

of the Nyquist signalling waveform (a sinc function) gives the minimum required transmission

bandwidth of half the symbol rate (one quarter the binary bit rate with 4 QAM).

Figure 3.2 shows the modulation of sine and cosine sinusoidal carriers for a constant input symbol.

The information in figure 3.2 can also be represented by a constellation diagram which shows the

magnitude of the carriers for each symbol and which binary bits are mapped to those symbols. If two

binary zeros were mapped to the waveform in figure 3.2 the constellation diagram shown in figure 3.3

would result.

Figure 3.2 QAM modulation of a sine and cosine carrier



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

26

A complete 4 QAM constellation with the binary bit to sine and cosine amplitude mappings listed in

table 3.2 is drawn in figure 3.4

Bits Sine Amplitude Cosine Amplitude

00 +1 +1

01 +1 -1

10 -1 -1

11 -1 +1

DMT ADSL effectively modulates data onto 256 different sine and cosine carrier pairs. Since each

carrier has a different centre frequency the technique is called Discrete MultiTone modulation. ANSI

term each subcarrier pair as a ‘bin’ into which data is ‘loaded’ according to its constellation mapping.

Each bin, i, is loaded with ni data bits, with n depending on the measured SNR at the subcarrier

frequency of the bin. A bin with a high SNR will be heavily loaded with data (i.e. use a large QAM

constellation), whereas a bin with a low SNR will be lightly loaded or completely unloaded (i.e. use a

small or null constellation). Figure 3.5 shows a conceptual 3 tone DMT modulation scheme with bins 1

sine1

-1

-1

1

cosine

Figure 3.3 QAM constellation for a sine + cosine symbol

00

Table 3.2  4 QAM bit to carrier amplitude mapping

Figure 3.4 Complete 4 QAM constellation

10 01

sine1

-1

-1

1

cosine

0011



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

27

and 3 loaded with 4 and 2 data bits per symbol respectively and bin 2 with none possibly due to intense

coloured noise in its bandwidth.

In practical systems, this brute force method of summing up a set of separately generated QAM signals

isn’t adopted, rather each constellation output is placed along with its complex conjugate, in a vector on

which an inverse Fourier transform is performed5. This produces a real-valued time domain sequence

1101

DMT Signal

Figure 3.5 3 bin DMT modulation

sin ω1t

sin ω3t

cos ω3t

00

10 01

11

Bin 3

sin ω2t

cos ω2tBin 2

cos ω1t

0000

0100

1001

1000

1010

0010 0001

1011 1100

1110

1111

0111

0110

0011

0101

Bin 1

Convert constellation to
sine and cosine carriers

at frequency ω2t

Convert constellation to
sine and cosine carriers

at frequency ω3t

Convert constellation to
sine and cosine carriers

at frequency ω1t



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

28

that, after D/A conversion and filtering, gives a signal equivalent to that produced by the summation of

QAM signals.

The simplified model of a 3 bin DMT scheme illustrates the rate adaptive nature of DMT ADSL. The

data rate on each carrier pair is software controllable, which enables

• Redistribution of data loading into different bins to overcome specific bandlimited

interfering signals.

• Service provider controlled tiering of data rates using software reconfigurable modems.

• FDM of the up and downstreams, thus eliminating self NEXT.

All these features reduce modem costs and widens service provision to a multi rate access system.

3.1.2.1 ANSI T1.413 DMT Specification1

The T1.403 standardisation for downstream DMT ADSL is for 256 carriers separated by exactly

4.3125 kHz. The first subcarrier is at 4.1325 kHz, with the 256th at 1.104 Mhz (called the Nyquist

tone).  The standard limits the data loading on each subcarrier to 15-bits, equivalent to a QAM

constellation of 215  (32 768) points, with a symbol rate of 4 kBaud (250 µs symbol period).  For the

upstream, there are 32 subcarriers with the same spacing, the first at 4.3125 kHz and the last at 138

kHz. The maximum upstream subcarrier loading is the same as the downstream. Figure 3.6 shows the

streams’ subcarrier spacing and PSDs if all subcarrier channels were equally loaded equally  (i.e. the

equivalent of 256 QAM signals with the same sized constellation - a theoretical situation solely to show

the nature of the PDSs).

Po
w

er
   

  D
ow

ns
tr

ea
m

Frequency kHz

Frequency kHz

4.
31

25

8.
62

5

13
8.

0

34
.5

00

14
2.

31
25

1 
10

4.
0

Po
w

er
   

  U
ps

tr
ea

m

4.
31

25

8.
62

5

13
8.

0

34
.5

00

Figure 3.6 ANSI T1.413 carrier spacing and PSDs



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

29

Although the actual structure of the ADSL data framing and practical modulation scheme are very

complex6, the design of a line simulator is independent of such higher layer functionality as the ADSL

signal is viewed at the physical layer.

3.1.2.2 Frequency Division Multiplexed DMT ADSL

FDM in ADSL systems is achieved by band limiting and spectrally separating upstream and

downstream transmissions. The rate adaptable nature of DMT provides a simple way of implementing

FDM by simply using null constellations for the downstream modulation bins where the upstream

transmission spectrum is located. The same approach is used to give the FDM of the voice spectrum

with the two ADSL signals. Upstream – downstream FDM is achieved by using null constellations for

bins 8 to 32 in the downstream DMT transmission. Voice – ADSL FDM is through null constellations

for bins 1 to 7 on both data streams. Overall, the PSD mask indicating the power spectra for all three

signals is shown in figure 3.7.

3.1.2.3 ADSL Lite

The PSD mask for ADSL Lite is spectrally limited by using null constellations for the higher frequency

downstream subcarriers. The service is unstandardised, but uses the same subcarrier spacing as full

ADSL.

3.1.2.4 DMT Echo Cancelled ADSL

An alternative to using FDM for duplex operation is to allow the data stream spectra to overlap then

remove any unwanted echo at the co-located receiver due to self NEXT using cancellation techniques7.

This is possible as a transceiver has knowledge of what it is currently transmitting, therefore it is able

to remove by subtraction any attenuated copy of its own transmission arriving at its receiver. Echo

cancelled DMT ADSL systems offer higher data rates of upto 8 Mbps, but have not been standardised.

It is interesting to note that by giving the downstream transmission an extra 26 usable subcarriers, the

maximum data rate is increased to just over 8 Mbps. This represents an increase in data rate of 33% for

Power

4 kHz 30 kHz 138 kHz 1.104 MHz

Figure 3.7 PSD mask for ANSI T1.413 FDM  DMT ADSL

Frequency kHz



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

30

only a 10% increase in occupied spectrum. This seemingly contradictory result is due to much higher

SNRs at lower frequencies. In DMT ADSL systems, high frequency subcarriers tend to be lightly

loaded whereas lower frequency carriers tend to be heavily loaded.

3.1.3 CAP Modulation

ADSL using CAP modulation has been developed by the company Globespan. No standarisation has

been completed although several ad-hoc committees have made proposals8,9. Since CAP ADSL is a

proprietary technology it is not precisely defined. Proponents of DMT ADSL have produced many

papers championing their preferred solution at the expense of CAP3,5. Most of these papers have been

written by companies after testing competitors’ CAP modems and as such, one must view their findings

with a pinch of salt.

CAP and QAM systems are very closely related. The term ‘carrier-less’ arises due to the primary

difference between CAP modulation and true QAM. QAM modulators actually generate and mix two

orthogonal sine and cosine carriers using analogue electronics. In contrast, CAP modulation is a digital

process, where impulses are filtered by two filters with responses describing Hilbert transform pairs

and then summed. Both techniques modulate data according to symbol to ‘carrier’ amplitude mapping

constellations.

The ANSI proposal for CAP implementation10 has a high symbol rate of 1088 kBaud with a maximum

256 point constellation. In comparison to DMT ADSL that transmits multiple, long 250 µs symbols,

CAP ADSL transmits a single, short 0.91 µs symbol. Of greatest interest in relation to a line simulator

is the PSD mask for CAP systems, shown in figure 3.8.

Whether both systems will survive is questionable. The overwhelming support for DMT is as equally

accreditable to the reported merits of DMT over CAP as to the number of manufacturers producing

DMT modems and chipsets compared with those producing CAP modems. Justifiably, manufacturers

of DMT modems are concerned at the prospect of the possible wide deployment of DMT and CAP

systems side by side in the same access bundle due to their overlapping spectra, shown in figure 3.9.

T1.413 downstream DMT ADSL, which was designed specifically to eliminate self NEXT through

FDM, would be adversely affected by CAP signals, especially since the lower DMT subcarriers are

 CAP    Power

4 kHz 30 kHz 180 kHz 1.5 MHz

Figure 3.8 PSD mask for CAP ADSL

Frequency



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

31

heavily loaded with data. Whatever the technical merits of DMT and CAP, market forces are likely to

pick the winning technology.

3.2 VDSL

VDSL systems are designed to offer very high data rates upto 55 Mbps over distances of a few

thousand feet. VDSL modems will be required to function with increased crosstalk and external

interference due to the extended operational spectrum. Some typical performance targets proposed by

ANSI10 are illustrated in table 3.3.

Reach Data Rate Downstream (max) Data Rate Upstream (max)

1 000 ft 51.84 Mbps 2.3 Mbps

3 000 ft 27.6 Mbps 27.6 Mbps

4 500 ft 13.8 Mbps 13.8 Mbps

VDSL deployment is envisaged as a final drop to the customer in conjunction with fibre to the curb.

Feasibility studies conducted by several companies have indicated CAP or QAM as the only

commercially viable modulation techniques. Although DMT may well be preferable to CAP/QAM,

DSP functionality has only recently reached a level advanced enough to implement ADSL DMT. As

shown in figure 3.10, VDSL bandwidths are almost twenty times higher than for ADSL. DMT

modulation using similar IDFT techniques to ADSL would require substantial parallel processing and

is economically unattractive.

Frequency

Power

1.104 MHz138 kHz4 kHz 30 kHz 180 kHz 1.5 MHz

Figure 3.9 DMT / CAP power spectra comparison

DMT PSD Mask

CAP PSD Mask

CAP / DMT spectral overlap

Table 3.3 VDSL performance targets



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

32

3.3 ADSL and VDSL Data Rates and Reach

Although not directly relevant to the line simulator, an overall picture of the relationship between the

probable deployment scenarios of ADSL and VDSL11 is shown in figure 3.11.

Figure 3.10 VDSL spectral spreads

50

40

20

30

10

Reach kft3 96 12 15 18

Data Rate Mbps

Figure 3.11 VDSL data rates and reach

VDSL

ADSL



Chapter 3 ADSL / VDSL Technologies Andrew Wilkinson

33

References

                                                       
1 American National Standards Institute, ANSI T1.413-95, Asymmetric Digital Subscriber Line

(ADSL) Metallic Interface, 1995.

2 “The DSL Source Book”, Paradyne Corp, February 1999, p24.

3 Rupert Baines, “Discrete Multitone (DMT) vs. Carrierless Amplitude / Phase (CAP) Line Codes”,

Analog Devices, May 1997, p1-2 (Performance and Trials).

4 “Consumer Installable ADSL: An In-Depth Look at G.Lite Technology”, Orckit Communications

Ltd, December 1998.

5 “CAP vs DMT”, Aware Ltd, White Paper, March 1999.

6 “How does ADSL work?”, DSL Knowledge Center, Orckit Communications Ltd, 1998.

7 M. Ho, J. Cioffi, and J. Bingham, “An Echo Cancellation Method for DMT with DSLs”, Amanti and

Stanford University T1E1 Contribution, T1E1.4/92-201, December 1992.

8 American National Standards Institute, contribution to standards review, T1E1.4/96-170R1, April

1999.

9 M. Darveau et al, NorTel Inc, “QA / CAP RADSL Interference into DMT-ADSL”, American

National Standards Institute, contribution to standards review, T1E1 Ad Hoc/97-166, 1997.

10 V. Freidman et al, “VDSL Draft Specifications”, American National Standards Institute Document

T1E1.4/98-054R1 (June 1998).

12 P.Chow, J. Tu, and, J. Cioffi,  “Performance Evaluation of a Multichannel Transceiver System for

ADSL and VDSL”, IEEE JSAC, Vol. 9, no. 6, August 1991.



34

Chapter 4

Line Simulator Requirements

Chapters 2 and 3 described the twisted copper pair environment at extended frequencies and listed the

PSDs expected for ADSL and VDSL systems. The copper line gives rise the physical impairments of

insertion loss and phase shift. Multiple xDSL lines within the same access bundle cause both self and

foreign NEXT and FEXT. As with all electronics, additive impulsive and Guassian white noise is

incident on the line. Due to the extended operational spectra, especially of VDSL, RF passband noise,

often referred to as coloured noise, will impact on the systems overall BER. The line simulator must be

able to accurately copy this behaviour throughout the relevant spectrum, but without inducing further

signal impairments.

4.1 Physical Line Characteristics

A twisted copper line’s insertion loss and phase response are functions of both frequency and reach.

Chapter 2 developed theoretical expressions for both impairments and gave an indication of the

predicted spread of their values using experimental data for the primary RLCG line parameters. Close

examination is necessary to quantitatively describe the necessary simulator behaviour for both ADSL

and VDSL CAP/QAM modulation schemes.

4.1.1 Insertion Loss

Figure 2.2, chapter 2, shows the predicted maximum insertion loss for lines to a maximum length of 12

kft, operating at frequencies to 10 MHz. Table 4.1 overleaf summaries the extremes of insertion loss.



Chapter 4 Line Simulator Requirements Andrew Wilkinson

35

Maximum Insertion Loss (dB)

Reach @ 1 MHz

(DMT ADSL BW)

@ 1.5 MHz

(CAP ADSL) BW

@ 20 MHz

(VDSL BW)

1 kft 5 7 ≈ 30

6 kft 30 35 ≈ 120

12 kft 62 87 Not Applicable

For a uniform homogenous access line, the insertion loss is monotonically increasing. Pre-empting

chapter 5, any digital simulation will in some manner quantise the frequency spectrum of the signal

being modified by calculating a set of frequency values (called frequency samples) from a set of time

domain samples of the signal. The discrete frequency representation will be modified according to the

line’s behaviour, termed frequency filtering. Whatever time-frequency transform is used, the size of the

finite frequency quantisation interval will introduce new distortion when the insertion loss is simulated

because the real line’s insertion loss varies over the bandwidth of the frequency quantisation interval.

The spacing of the calculated frequency samples is termed the transform resolution, with a single

interval called a cell. Discrete transforms have a single complex data point for each transform cell.

Sinusoids of different frequencies within a single cell cannot be distinguished1, therefore a discrete

transform can only model the insertion loss as a set of stepped discrete values. From this it is apparent

the frequency resolution of the chosen transform must be small enough so that the line’s behaviour can

be approximated as flat over that region without introducing too much error. For example, consider a

transform with just 16 frequency intervals to simulate the 20 MHz bandwidth of a VDSL signal over a

6 kft line. The transform’s frequency resolution is 1.25 MHz (20 x 106/16). Figure 4.1 reproduces the

insertion loss for a 6 kft 26 gauge twisted copper pair with an overlay grid spaced at the frequency

samples of the 16 cell transform (shown upto 10 MHz). The red stepped line shows the discrete

frequency filter’s approximation to the real line’s continuous response.

Over 20 MHz, a 6 kft line’s insertion loss varies by 120 dB (extrapolated beyond 10 MHz). The

average variation of insertion loss is 7.5 dB (120/16) across each transform cell. The greatest variation

Table 4.1 Maximum insertion losses

Figure 4.1 Insertion loss range



Chapter 4 Line Simulator Requirements Andrew Wilkinson

36

occurs in the cell with the  lowest frequency interval between 0 to 1.25 MHz which, from figure 4.1, is

approximately 34 dB (The variation in the next interval is smaller at 14 dB). Clearly a transform with

such a large large resolution compared to the actual variation in insertion loss wouldn’t capture the

line’s behaviour at the lower frequencies. However, since DSL systems work along side the existing

POTs, there is a 30 kHz guard band from DC, unoccupied by DSL signals, which doesn’t need

simulating. For VDSL, which operates between approximately 1.1 and 20 MHz, the maximum

variation of insertion loss to be simulated occurs in the transform interval from 1.25 to 2.5 MHz, not

the first interval from DC to 1.25 MHz. This interval will be termed the first relevant frequency interval

and is the 14 dB variation shown in figure 4.1.

Table 4.2 lists the mean and maximum variation of insertion loss across the first relevant transform

interval (not from DC), for DMT ADSL and VDSL systems for various power of two note 1 frequency

transform resolutions. Maximum losses were determined using the Matlab version 5 function

[x,y]=ginput(1) which allows the user to specify graphical points on the response curves of

figure 2.2 using a mouse and crosshairs (see appendix 2). An overlay grid was first placed on the

response curve of the insertion loss, thereby indicating the transform’s first relevant frequency interval.

As an example, the insertion loss curve for a 12 kft twisted copper pair is shown in figure 4.2. For

illustration, the overlay grid marks the first relevant frequency intervals above 30 kHz (the lowest

loaded carrier for DMT ADSL), for transforms with resolutions of 32, 256 and 1024 frequency points

over the part of the ADSL bandwidth between 10 kHz and 1MHz.

Clearly, with the small transform, the real copper pair exhibits substantial variation of insertion loss

across the transform’s resolution interval compared to the larger transforms.

4.1.2 Phase Shift

As shown from figure 2.4, chapter 2, the phase response of a twisted copper pair varies from -π to π
radians many times across DSL spectrums for even the shortest length of twisted copper lines. The

frequency over which the phase repeats is known as the full phase rotational bandwidth and is of prime

Figure 4.2. Insertion loss for 12 kft twisted copper pair with overlay grid showing the
first relevant frequency transform interval

Note 1: Chapter 5 shows that any DFT capable of computation within the time sampling window must be a Fast Fourier
Transform where the input vector length is formed to be a power of two (or four).



Chapter 4 Line Simulator Requirements            Andrew Wilkinson

37

ADSL

DMT (1.1 MHz BW)

VDSL

CAP / QAM (20 MHz BW)

Mean Interval Loss

(Across the entire DSL spectrum)

dB

Max Interval Loss

(Across the first relevant

transform interval)

dB

Mean Interval Loss

(Across the entire

DSL spectrum)

dB

Max Interval Loss

(Across the first relevant

transform interval)

dB

No’

of

points
Resolution

kHz

1 kft 6 kft 12 kft 1 kft 6 kft 12 kft

Resolution

kHz

1 kft 6 kft 1 kft 6 kft

16 68.8 0.313 0.938 3.88 1.33 7.97 16.1 1 250 0.938 7.50 2.32 14.10

32 34.4 0.156 0.469 1.94 0.35 2.32 4.75 625 0.469 3.75 1.27 7.63

64 17.2 0.078 0.234 0.97 0.21 1.36 2.64 313 0.234 1.88 0.67 4.26

128 8.6 0.039 0.117 0.48 0.11 0.67 1.36 156 0.117 0.94 0.34 2.28

256 4.3 0.020 0.059 0.24 0.06 0.34 0.69 78 0.059 0.47 0.18 1.06

512 2.1 0.010 0.029 0.12 0.03 0.18 0.35 39 0.029 0.23 0.09 0.59

1024 1.1 0.005 0.015 0.06 0.01 0.09 0.18 20 0.015 0.12 0.04 0.26

Table 4.2 Insertion loss for various frequency transform resolutions



Chapter 4 Line Simulator Requirements Andrew Wilkinson

38

importance to the simulator design. The resolution of the discrete frequency transform used in the

simulator must be small enough so that the phase change exhibited on the real line across the resolution

bandwidth may be approximated as flat without introducing excessive distortion in the signal. Unlike

the insertion loss, which has a maximum variation across the transform’s first frequency interval, the

rate of change of phase shift is constant across the spectrum resulting in an equal phase change across

all of the transform cells. The full phase rotation bandwidths for 26 gauge 1, 6 and 12 kft twisted

copper pairs are shown in detail in figure 4.3 and summarised in table 4.3.

Reach Full Phase Rotation Bandwidth (-π to π) Phase Variation per kHz (rads)

1 kft ≈ 275 kHz 0.023

6 kft ≈ 46 kHz 0.136

12 kft ≈ 23 kHz 0.273

4.1.3 Acceptable Phase and Magnitude Variations

Before deciding on a minimum transform resolution the question as to what are acceptable variations in

magnitude and phase across the transform cell arises? This is a very difficult question to answer.

Figure 4.3. Detailed phase response for 26 gauge pairs

Table 4.3. Full phase rotation bandwidths for 26 gauge pairs



Chapter 4 Line Simulator Requirements Andrew Wilkinson

39

Ideally the effect of increasing variations across the interval should be investigated with a prototype

simulator with variable transform resolution simulating an access line between two xDSL modems. The

minimum transform resolution would be determined according the simulator’s experimental

performance compared with an actual physical line for identical xDSL modem pairs.  As an initial

design, a maximum cell variation of 10%, allowing a maximum insertion loss variation of 0.4 dB

(10log1.1) and phase variation of 0.628 radians will be used.

4.2 Crosstalk

The Analogue Front Ends2 (AFEs) of DSL receivers and transmitters incorporate bandpass filtering to

strictly limit the transmission bandwidth. In the absence of inter-modulation distortion, signal power

falling outside the filtered bandwidth will be removed. A simulator therefore only needs to simulate

crosstalk inband of its own PSD mask. The particular DSL modulation scheme defines the required

simulation bandwidth, so therefore also specifies the required crosstalk simulation frequency range.

The required transform frequency resolution for crosstalk simulation is also dependent on the particular

modulation scheme. For example, a simulator with a transform resolution of 10 kHz, won’t have the

required resolution to simulate crosstalk to individual DMT ADSL subcarriers spaced at 4.3125 kHz.

4.3 AWGN, Impulsive and Coloured Noise

Following the same argument as for crosstalk, the line simulator’s bandwidth for modelling AWGN,

impulsive and coloured noise will be fully specified by the requirements of the DSL signal’s

bandwidth.

4.4 ADSL Line Simulator Requirements

With specified PSDs and the simulation requirements of maximum insertion loss and phase shift

variation over a transform cell, frequency transform parameters can be determined. Different specific

simulation requirements exist for each distinct DSL access method so each will require different

transform.

4.4.1 DMT ADSL

DMT ADSL modulates downstream data onto 256 subcarriers spaced at 4.3125 kHz intervals, the first

at 4.3125 and the last at 1 104 kHz. A DMT ADSL line simulator must be capable of modifying each



Chapter 4 Line Simulator Requirements Andrew Wilkinson

40

individual subcarrier component, therefore there must be at least one frequency transform data point for

each subcarrier. The upstream is similar, but limited to 32 carriers extending to 138 kHz.

4.4.1.1 Transform Requirements due to Insertion Loss

From table 4.2, with an insertion variation limit of 0.4 dB and access line lengths of 1, 6 and 12 kft, the

required minimum transform resolution, number of frequency points and observable bandwidth are

shown in table 4.4 for the downstream channel. The upstream transform requirements are satisfied by

those for the downstream because the DMT spacing is the same, but over a smaller spectrum and with

the same guard band of 30 kHz.

Reach

Minimum Transform

Resolution

(Downstream)

Minimum Number of

Frequency Cells over

Min’ Observable Bandwidth

(Downstream)

Minimum Observable

Bandwidth

(Downstream)

1 kft 256

6 kft 256

12 kft

4.3125 kHz

512

1.104 MHz

4.4.1.2 Transform Requirements due to Phase Shift

The transform requirements due to the maximum phase shift variation limit of 0.628 radians are

determined from table 4.3 and listed in table 4.5 below, again for power of two transforms. As with the

insertion loss, due to the rapid phase change with frequency for the long 12 kft lines (shown in the

bottom plot of figure 4.3), the ADSL spectrum must be divided into an excessive 512 cells to achieve

the specified limit of 10% phase variation across the resolution interval.

Reach

Minimum Transform

Resolution

(Downstream)

Minimum Number of

Frequency Cells over

Min’ Observable Bandwidth

(Downstream)

Minimum Observable

Bandwidth

(Downstream)

1 kft 17.25 kHz 64

6 kft 4.3125 kHz 256

12 kft 2.16 kHz 512

1.104 MHz

Table 4.5 DMT ADSL simulator transform requirements considering phase shift variation

Table 4.4 DMT ADSL simulator transform requirements considering a maximum 10 % insertion
loss variation across the first relevant transform cell



Chapter 4 Line Simulator Requirements Andrew Wilkinson

41

4.4.1.3 Overall Transform Requirements

In order to satisfy the requirements for both loss and phase response and crosstalk, the higher resolution

transform of the two tables and that given for crosstalk by DMT spacing must be used for each line

type. Ideally the simulator should use a frequency transform with 512 samples to cover the entire range

of specified reaches for DMT ADSL lines. However, as will be shown in chapter 5, a transform with

256 frequency samples within the 1.104 MHz bandwidth is more easily implemented. If a 256 cell

frequency transform is used for long lines upto 12 kft long, the maximum interval insertion loss

variation would be 0.69 dB (17%) over the first relevant frequency interval and the phase shift interval

variation would be 1.18 radians (19%).

The frequency transform parameters in tables 4.4 and 4.5 satisfy both FDM and EC DMT ADSL.

4.4.2 CAP ADSL

CAP ADSL systems modulate data onto just one carrier in each direction, so the transform

requirements are not dependent on a subcarrier spacing. The required transform resolution due to

insertion loss and phase variation is the same as for the DMT simulator. CAP ADSL bandwidth is 50 %

larger than that for DMT ADSL. Chapter 5 will show that a 1024 point DFT note 2, with frequency

sample spacing at the DMT subcarriers has a maximum observable frequency of 2.2 MHz. This

indicates that the same transform hardware can be used to simulate CAP as well as DMT systems.

However, a problem could occur due to the DMT simulator’s AFEs which will incorporate lowpass

filters with a 1.1MHz corner frequency. This would stop a very important part of the CAP spectrum

from entering the simulator’s frequency transform block. A solution would be to use the same

transform block, but different AFEs for the two schemes.

4.5 VDSL Line Simulator Requirements

VDSL transmission spectrums are much larger than those for ADSL. In addition, whereas the DMT

ADSL bandwidth is fixed regardless of the data rate, VDSL bandwidths are dependent on the data rate,

shown previously in figure 3.10. Therefore the simulator requirements depend on the VDSL modem’s

designed data rate.

For a full rate service with a 20 MHz bandwidth and a short 1 kft access line, the minimum transform

resolution considering the insertion loss is 39 kHz. This corresponds to 512 cells across the 20 MHz

spectrum. The rate of phase variation is independent of frequency, but dependent on line length. From

table 4.3, a 1 kft line requires a resolution of 27 kHz (the same for a 1 kft ADSL line, table 4.5) to limit

the phase variation to 10% across the transform cells. From this requirement, the minimum number of

transform cells is 741.

Note 2: When the term point is used in the context of a DFT, it refers to the combined number of positive and negative
frequency points, so a 1024 point DFT divides its observable spectrum into only 512 positive frequency intervals or cells



Chapter 4 Line Simulator Requirements Andrew Wilkinson

42

4.6 Summary of Transform Requirements
Summarising, the required frequency tranforms for the three DSL modulation schemes under

consideration are shown in table 4.6.

Minimum Obervable Bandwidth
Minimum No. of Cells over the Minimum

Observable Bandwidth

ADSL DMT 1.1 MHz 256

ADSL CAP 1.5 MHz 256 over 1.1 MHz

VDSL CAP / QAM 20 MHz 741

References
                                                       
1 E. Oran Brigham, “The Fast Fourier Transform and Its Applications”, Prentice Hall, 1988, p170.

2 Denis J. Rauschmayer, “ADSL / VDSL Principles”, Macmillan, 1999, p208.

Table 4.6 Overall ADSL and VDSL simulator transform requirements



43

Chapter 5

Signal Processing Fundamentals

Signals can be described and modified in different domains such as time and frequency. Some signals

are more easily modelled in one domain than in another. For example, impulsive noise due to switching

is readily described by a rapidly rising and falling pulse in the time domain. The same noise may be

modelled in the frequency domain in terms of its spectral components, but is less easy to do. The

choice facing the designer of a line simulator is in which domain is it easiest to model and modify

signals associated with DSL transmission?  It is not a simple choice, as ‘ease’ encompasses many areas

such as accuracy, complexity, versatility and cost to name but a few. To complicate the choice further,

different categories of signal may be more suited to one domain rather than another, giving rise to a

model described in more than one domain. This chapter will consider the two basic domains of time

and frequency and develop signal processing principles for specific modelling implementations.

5.1 The Modelling Requirement

As discussed in previous chapters, a DSL line simulator must model the physical effects of the access

line in addition to noise and crosstalk. The end to end description is of a transmitted signal from a DSL

modem, x(t), modified by a physical line described by its impulse response, h(t), arriving at a receiving

modem with the addition of noise, n(t), and crosstalk, c(t).  In the time domain, x(t) is convolved1 with

h(t) and summed with n(t) and c(t). In the frequency domain, x(t)’s Fourier transform, X(f), is

multiplied by h(t)’s Fourier transform, H(f), and summed with the noise and crosstalk transforms, N(f)

and C(f). Figure 5.1 shows these two alternative descriptions.



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

44

5.2 Signal Domains

5.2.1 Physical Line Effects

Shown only the insertion loss of figure 2.2, it would be reasonable to conclude the response is one of a

monotonic filter such as a Butterworth design. If this were the case, simulating the response in the time

domain using a digital filter would be the obvious choice. However, if one also considers the phase

response of figure 2.3, a designer would be challenged to reproduce it with a time domain digital filter.

A linear phase response FIR filter could be used to model the insertion loss, but the phase response

would be very difficult to recreate with a time domain digital filter.

An alternative to filtering in the time domain, which instead of convolving the signal and impulse

response of the filter, is to multiply the signal and filter transfer function in the frequency domain. This

is equivalent due the transform property of the Fourier transform; convolution in one domain is the

same as multiplication in the other. Filtering in the frequency domain, is actually the preferred method

for channel equalisation in practical receivers2 where a Frequency Domain Equalisation (FEQ) filter

multiplies the frequency samples given by a DFT of the incoming signal with the inverse frequency

response of the channel it is connected to. Frequency domain filtering has also been employed

extensively in the field of medical CT and MRI3 scanning where processing is non-real time and

requires tight control of phase response. The major problem with frequency domain filtering in the

r(t) = x(t) * h(t)  +  n(t) + c(t)x(t)

h(t) n(t) + c(t)

R(f) = X(f)H(f)  +  N(f) + C(f)X(f)

H(f) N(f) + C(f)

Figure 5.1 Time and frequency domain description of transmission process



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

45

telecommunication’s arena is the requirement of real time processing. To filter in the frequency

domain, a discrete frequency representation of the sampled time domain signal must be computed, then

modified for each frequency sample then transformed back to the time domain. If the two transforms

can be achieved in real time, frequency domain filtering provides a very powerful tool4.

Figure 5.2 shows how a single tone’s magnitude and phase can be modified using frequency domain

multiplication, with an attenuation factor of ‘B’ and phase shift of 90°.

To produce the 90° phase shift, the Fourier transform of the signal is multiplied by a purely complex

conjugate pair. The attenuation of the tone is given by the magnitude of the multiplying complex

number.

Figure 5.3 shows a monotone attenuated and shifted by an arbitrary phase through multiplication with a

complex conjugate pair with non-zero real and imaginary parts. The resultant phase shift of a tone at f1

due to the filter’s transfer function H(f) is given by

The behaviour of a filter across a band of frequencies can be produced by multiplying each frequency

component of a signal by different complex conjugate pairs. Clearly the control of the phase response

AB

τ t
-AB/2

-B

AB/2

B

real

1/τ-1/τ

1/τ

1/τ

f

f

f
tτ

A/2

A
imaginary

Figure 5.2 Magnitude and controlled 90° phase shift of a single tone









= −

))(Re(

))(Im(
tan

1

11

1 fH
fH

fϕ



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

46

makes frequency filtering an ideal choice to model the phase response of an access line at the extended

DSL frequencies.

5.2.2 Crosstalk

DSL signals are characterised by their PSD which is a frequency domain description. Crosstalk, which

is dependent on the PSDs of the disturbing and disturbed signals, can therefore easily be modelled in

the frequency domain by the scaled addition of the disturber’s PSD to the disturbed signal’s PSD. With

discrete transforms this corresponds to adding a scaled disturbing signal’s DFT to the disturbed signal’s

DFT.

Self crosstalk to a DSL signal can be simply simulated by the addition of a delayed and attenuated copy

of the DFT of the same signal. However, since the simulator will first sample the time waveform, self

crosstalk can just as easily be produced in the time domain by the addition of a delayed and attenuated

copy of the time sampled signal instead of the DFT of the signal under simulation.

Although both approaches are relatively straight forward, modelling in the frequency domain enables

foreign crosstalk to be modelled more easily as knowledge of other DSL signals’ PSD functions is

generally known, whereas a time domain approach would require generation of line codes. Figure 5.4

shows both frequency and time domain self and foreign crosstalk modelling methods.

ϕ f1

τ t

real

1/τ-1/τ

1/τ

1/τ

f

f

f
tτ

A/2

A
imaginary

Figure 5.3 Magnitude and controlled arbitrary phase shift of a single tone



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

47

5.2.3 Noise

5.2.3.1 Additive Gaussian White Noise

AGWN can be modelled in both time and frequency domains. In the frequency domain, AGWN can be

generated as random sinusoids with random phase through additions of single complex conjugate

points to the DSL signal’s DFT.

5.2.3.2 Coloured Noise

By its very definition, coloured noise which is noise occupying a specific spectral band, is described in

the frequency domain by its PSD function. Since coloured noise is a set of different frequency

sinusoids, it could be modelled in the time domain, but would require additions to all time samples

whereas in the frequency domain modelling requires additions to only the few frequency samples its

occupies.

x(t) + c(t)

x(t)

Self Crosstalk
 cS(t)

DAC

Delay
@

Attenuate

ADC

Figure 5.4 Frequency and time domain crosstalk modelling

Foreign Crosstalk
CF(t)

x(t)

X(f) + C(f)

Foreign Crosstalk

PSD function CF(f)

Self Crosstalk
PSD function CS(f)

ADC DFT DACIDFT

Delay
@

Attenuate

x(t) + c(t)

X(f)

C(f) = CS(f) + CF(f)

c(f) = cS(t) + cF(t)



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

48

Modelled in the time domain5, coloured or bandpass noise can be viewed as a sum of two sinusoids

Alternatively it can also be viewed as a single sinusoid with randomly fluctuating amplitude and phase

5.2.3.3 Impulsive Noise

Impulsive noise is generally produced by switched currents ranging from semiconductor switching to

motor contact arcing. Figure 5.5 shows a typical time waveform of impulse induced noise.

Whilst repetitive impulsive noise bursts may occupy a fairly well defined spectral mask, random,

irregular bursts of impulsive noise are more readily modelled in the time domain. Since both domains

are useful in modelling impulsive noise, the combination of both time and frequency techniques shown

in figure 5.6 gives maximum flexibility.

5.2.4 Overall Simulation Model

Combining the modelling approaches of the previous sections, conceptually the physical line, crosstalk

and noise environment can be simulated using the method shown in figure 5.7.

x(t) + nRI(t)

X(f)x(t)

time

voltage

Figure 5.5 Impulsive noise waveform

X(f) + NRI(f)

ttnttntn ωω sin)(cos)()( 21 +=

)](cos[)()( tttrtn nφω +=

Isolated Impulsive
 Noise nII(t)

Repetitive Impulsive
Noise NRI(f)

ADC DFT DACIDFT

Figure 5.6 Impulsive noise modelling

x(t) + nRI(t) + nII(t)



Chapter 5 Signal Processing Fundamentals            Andrew Wilkinson

49

x(t) r(t) = x(t)*h(t) + c(t) + n(t)X(f)H(f)X(f)

All Time Domain
Modelled Noise nt(t)

All Frequency Domain
Modelled Noise Nf (f)

Foreign Crosstalk

PSD function CF(f)

Figure 5.7 Overall simulation method

Self Crosstalk
PSD function CS(f)

A/D DFT D/AIDFT

Delay
@

Attenuate

Frequency Domain
Filter with Phase Control

x(t)*h(t) + c(t) + nf (t)

X(f) H(f) + C(f) + Nf (f)

n(t) = n f (t) + nt(t)

C(t) = CS (t) + CF(t)

C(f) = CS (f) + CF(f)



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

50

5.3 Discrete Fourier Transform

The Discrete Fourier Transform6 (DFT) is the discrete equivalent of a signal’s frequency domain

description given by the continuous Fourier transform and is defined as

Application of this equation gives frequency components from DC to (N-1)/NTs Hz in steps of the

transform resolution, 1/NTs . The components from 1/2Ts to (N-1)/NTs are actually negative frequency

components7. In addition, if the discrete transform is scaled the same as the continuous version, the

DFT can be written

Computed using the basic equation above, the computation can handle any number of time sample

points, N, but tends to be computationally intensive and thus slow. Many algorithms have been

developed dramatically reducing the computation time at the expense of setting conditions on the input

vector’s length. Speed optimised algorithms exploit the computational repetition in the full DFT that

can occur for constrained data lengths. For example, the original Fast Fourier Transform (FFT)

developed by J. Cooley and J. Tukey8, the radix 2 FFT, requires an input vector of length N = 2n.

Multiplications comprise the large majority of the machine code instructions performed to compute a

DFT using a digital processor. The radix 2 FFT algorithm’s increase in computational speed over the

basic DFT can be appreciated by considering the number of multiplications required by the two

algorithms for a given time vector, shown in figure 5.8.

Other fast algorithms are commonly radix 4, requiring input data to be of length N = 4n. Clearly if a

data vector is conditioned for use with a radix 4 FFT it will also be suitable for a radix 2 algorithm.

Time samples, N

Radix 2 FFT

Direct Calculation

128

62

256

512

1024

64 128     256 1024512

1,...,1,0)(
1

0

/2 −==







∑

−

=

− NnekTx
NT
n

X
N

k

Nnkj
s

s

π

Figure 5.8 DFT and radix 2 FFT multiplication comparison

2/...,1,1,0)(
1

0

/2 NnekTxT
NT
n

X
N

k

Nnkj
ss

s

±±±==







∑

−

=

− π



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

51

5.3.1 DMT ADSL Fast Fourier Transform

Recalling the requirements set out in chapter 4 for the simulator’s frequency transform, a DFT with

1024 points sampled at 4.416 MSPS has 512 cells each of width 4.31265 kHz and a maximum

observable frequency of 2.208 MHz. Over the 1.1 MHz DMT bandwidth this gives 256 frequency

samples. A 1024 point transform can be computed using either a 2 or 4 radix transform (210 =1024 and

45 = 1024).

5.3.2 CAP ADSL Fast Fourier Transform

Since the DFT described for DMT ADSL has a maximum observable frequency of 2.208 MHz, it is

also suitable for a CAP ADSL simulator that has the same resolution requirements and maximum

observable frequency of 1.5 MHz. Sampling at just over 2 MSPS gives a 500 kHz guard band to avoid

the effects of aliasing which occur when sampling at exactly twice the Nyquist limit is employed due to

the physical impossibility of realising a brick wall filter necessary to finally recover the signal.

5.3.3 VDSL Fast Fourier Transform

A full VDSL simulator must have a minimum observable frequency of at least 20 MHz. The Nyquist

sampling limit is therefore 40MSPS, although with the addition of a 5 MHz guard band, sampling at 50

MSPS is the practical minimum.

From chapter 4, section 5, short lines of just 1 kft (300 m), required 741 cells across the full rate 20

MHz bandwidth, which was constrained by the phase variation limit of 10%, not insertion loss

variation across the first relevant frequency interval. Since there is a 5 MHz guard band, the transform

must have a minimum of 926 cells across the 25 MHz bandwidth (741 x 25/20). This corresponds to a

2048 point DFT for a radix 2 FFT (24.4 kHz resolution) or 4096 points if a radix 4 algorithm is

employed to compute the discrete transform (12.2 kHz resolution).

5.4 ADC and DAC Conversion

Before any DFT can be performed, the analogue signal from a DSL modem must be sampled in the

time domain. Conversely, after taking the Inverse DFT (IDFT) of the modified signal, digital to

analogue conversion must be performed. Practically all conversion must be to a finite quantisation

interval described by a limited number of bits to be processed by any digital circuitry.

For a simulator, the ADC and DAC resolution must be at least as good as that used in the DSL modems

themselves or else the simulator’s sampling will distort the signal far more than the sampling within the

modems. The sampling precision required in modems must be fine enough so as not to limit the



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

52

channel capacity further due to its presence. Practical fast ADC and DAC conversion is achieved using

flash converters which due to their architecture have a limited number of quantisation bits and hence

precision.

5.4.1 Theoretical ADC and DAC Precision

Extensive work by Dr. Walter Chen9,10 on analogue front end precision requirements in DSL modems

has been conducted on which the sampling precision for the simulator has been based. The author

identifies three fundamental factors determining the required DAC resolution for passband QAM based

transmitters

• The constellation size

• The desired signal-to-noise ratio or error rate

• The peak to average voltage ratio of digital shaping filters

The author draws particular attenuation to the effect of the digital filtering and the maximum

transmission error rate on the required conversion precision. For example, a passband transmitter with a

constellation of 16 points requires 4-bit quantisation (24 = 16) without digital filtering, which increases

to 6 bits with filtering and a BER limit of between 10-6 and 10-8.

For ADSL with a maximum constellation size of 32 768 points the minimum DAC resolution is 14 bits,

but practically should be 15 to 16 bits to minimise the effect of quantisation noise compared with other

transmission impairments11. The same author proposes a minimum 16-bit ADC resolution for lines

upto 16 kft (3 miles) long.

5.4.2 Practical ADC and DAC Precision

As previously mentioned, a line simulator’s sampling resolution must be at least as good as that used in

the modems it will be connected to. Modem manufacturers however are very unlikely to divulge what

is inside their equipment, but an indication of the conversion precision employed can be gained from

considering recently released DSL AFE chip-sets that perform filtering and signal conversion. One

such device, the ADSL KeyWaveTM AFE manufactured by Fujitsu12, is designed for both full and

G.Lite applications and contains 15-bit ADC and DAC conversion blocks, sampling at some factor of

the 17.664 MHz reference clock, probably 8.832 MSPS (17.664/2 ) or 4.416 MSPS (17.664/4). The

exact reference clock division to the converters can only be predicted from the advance data sheet as

the device isn’t finalised yet, but will almost certainly be some factor of two.



Chapter 5 Signal Processing Fundamentals Andrew Wilkinson

53

References
                                                       
1 Walter  Chen, “DSL”, Macmillan, 1998, p.107.

2 Denis J. Rauschmayer, “ADSL / VDSL Principles”, Macmillan, 1999, p208, figure 7.2.

3 O. Helenon, M. Laval-Jeantet, J. Frija , “Artifacts on lung CT scans: removal with Fourier filtration”,
  Radiology, 171(2), May 1989,  pp.572-4.

4 Edward Cunningham, “Digital Filtering, An Introduction”, Wiley, 1995, p346.

5 John O’Reilly, Communication Systems Modelling Lecture Course, University College London,
  November 1998.

6 E. Oran Brigham, “The Fast Fourier Transform and Its Applications”, Prentice Hall, 1988, p97.

7 E. Oran Brigham, “The Fast Fourier Transform and Its Applications”, Prentice Hall, 1988, p169.

8 J. Cooley and J Tukey, “An Algorithm for Machine Calculation of Complex Fourier Series”, Math.
  Computation, April 1965, Vol. 19, pp.297-301.

9 W. Chen, “A Calculation of the Required A/D Precision for ADSL”, Bellcore T1E1 Contribution,
  T1E1.4/92-082, May 1992.

10 Walter Chen, “DSL”, Macmillan, 1998, Chapter 7 (Analog Front-End Precision).

11 N. Al-Dhahir and J. Coiffi, “On the Uniform ADC Bit Precision and Chip Level Computation for a
   Gaussian Signal”, IEEE Trans. On Signal Processing, vol. 44, no. 2 , February 1998, pp.434-438.

12 Product Preview, KeyWaveTM AFE, Fujitsu Microelectronics UK limited, December 1998.



54

Chapter 6

Matlab ADSL Signal Models and

Transform Verification

The work described in this chapter arose for three main reasons:

• Matlab ADSL signal models could be used to examine the effect of different sets of

frequency multiplication and addition vectors when developing the simulator’s software

drivers.

• To enable basic verification of the transform and sampling scheme for DMT ADSL

signals.

• To satisfy the author’s ‘bit pushing’ inclinations and intrigue at the physical nature of

DMT QAM based modulation.

Seven Matlab functions have been written and the associated m-files included on the CD ROM, which

enable multilevel QAM signals to be visualised, sampled and then filtered to recover pseudo analogue

waveforms.  Online help is included with all functions and can be accessed with the usual Matlab

help keyword.

6.1 QAM Signal Generation

As described more fully in chapter 3, QAM fundamentally consists of the sum of sinusoid and

cosinusoidal carriers of the same frequency whose amplitudes are discrete functions of the data words



Chapter 6 Matlab ADSL Signal Models and Transform Verification Andrew Wilkinson

55

to be transmitted. Data is encoded onto each carrier pair by mapping an m-bit binary word onto a

unique pair of carrier amplitudes, forming a symbol. To enable a set of different words to be

transmitted, the amplitudes of the two carriers are changed from the old to new values during the time

between sampling epochs. The nature of the transitions determine the transmission bandwidth required.

An instantaneous change from one set of amplitudes to another would require an infinite bandwidth,

whereas if the transition is in the form of a raised cosine or Nyquist signalling function, the bandwidth

required is equal to the data symbol rate. For example, with ANSI DMT ADSL, the symbol rate is

4.3125 kHz and each carrier group occupies a 4.3125 kHz bandwidth. Conceptually, DMT is simply

the sum of a set of different orthogonal carrier pairs, each modulated according to its own data input.

6.1.1 Baseband QAM

The Matlab function genbbnew generates a time vector describing the baseband signalling envelope

of a user defined series of data symbols (i.e. a time vector describing the amplitudes and transitions

between of a set of carrier amplitudes at the sampling epochs). To illustrate this, consider the following

two vectors which contain the cosine and sine carrier amplitudes at a contiguous group of sampling

epochs:

cossym = [+1 +3 +3 –1 –3  +1 +1 –1]

sinsym = [+1 –1 –3 –1 –1  +3 –1 –3]

These two vectors contain the amplitudes of the two carriers only at the time sampling epochs and are

illustrated in figure 6.1

For ANSI DMT ADSL, the transitions between the points shown are of the form a raised cosine. The

Matlab function

[tout, ycosbb, ysinbb] = genbbnew(cossym, sinsym, M, ts, tr);

Figure 6.1 Illustrative cosine and sine carrier amplitudes for QAM



Chapter 6 Matlab ADSL Signal Models and Transform Verification Andrew Wilkinson

56

returns two pseudo continuous time vectors ycosbb and ysinbb with points spaced tr seconds

apart according to the two sets of carrier amplitudes cossym and sinsym using the raised cosine

function to give the intermediate transition points. The top plot of figure 6.2 shows the baseband

envelopes produced when ts=1, tr=0.01, M=4 and the previous symbol vectors.

6.1.2 Passband QAM

The two carrier envelopes modulate the cosine and sine carriers by multiplication to produce the two

orthogonal passband signals. The final QAM waveform is given by the addition of the two modulated

carriers. The function

[tout, ybp, ycosbp, ycosbb, ysinbb, cossymb, sinsymb,]

= qamdef(cossym, sinsym, M, ts, carrierfreq, tr);

generates the baseband envelopes using genbbnew, then multiplies with the two carriers of a user

defined frequency, to produce the two orthogonal signals ycosbp and ysinbp and finally the QAM

signal ybp.

The vectors returned using the same parameters as before and a carrier frequency at four times the

symbol rate were used to plot figure 6.2 below.

Figure 6.2 QAM signals produced by the Matlab function qamdef



Chapter 6 Matlab ADSL Signal Models and Transform Verification Andrew Wilkinson

57

It should be noted that although the piecewise approach used to give baseband envelopes, carriers and

then passband signals by multiplication is perfectly valid, in practical DMT transmitters the multiple

QAM signals are actually produced digitally by means of an inverse DFT, described more fully in

section 3.1.2 and associated references.

6.1.3 Extension to DMT

Functions to produce a composite DMT signal, which is simply the sum of multiple individual QAM

waveforms with different carrier frequencies, can easily be written through repeated execution of the

qamdef function and a final vector summation.

6.2 Sampling

The functions above produce pseudo continuous descriptions of QAM signals. The term pseudo

continuous is used to indicate that although no digital representation of a signal can be truly continuous

(i.e. have an infinite number of points), the number of actual points is far greater than the number of

points which would produced by the simulator’s sampling of the real ADSL signal. For example, if the

simulator sampled at four times the highest carrier frequency, the simulator’s internal time data vector

representing that pair of carriers would have just four points per carrier cycle. The functions

sampstep and sampfreq both replicate the action of the simulator’s ADC time sampling. The first

allows the user to define the sampling step in seconds, the second as a sampling rate. Figure 6.3 shows

plots of the vectors produced by sampling the final QAM signal of figure 6.2 with a sampling

frequency of four times the carrier frequency (illustrated only over the first 3 symbols for clarity). It

should be borne in mind when viewing the plot that the QAM signal is a composite addition of

modulated cosine and sine carriers, therefore the number and position of samples within subsequent

complete oscillations seems to vary. This is deceptive, as it is infact the QAM waveform which is

varying compared to a simple sinusoid due to its very nature of modulation.

Figure 6.3 Sampled QAM signal produced by the Matlab function sampfreq



Chapter 6 Matlab ADSL Signal Models and Transform Verification Andrew Wilkinson

58

6.3 Filtering

The samples from the IDFT are converted to an analogue signal in the simulator by the action of the

DAC and output low pass filter. Using Matlab, filtering of the sampled discrete time vector of the form

shown in figure 6.3 can be achieved via convolution with a pseudo continuous filter impulse response.

The function brckfilt performs the function of a perfect brickwall filter by convolved with the

sampled time vector resulting from the IDFT. The function allows the user to enter the bandwidth of

the filter.

6.4 Basic Transform Verification

Using the custom and standard signal processing Matlab functions, it is possible to generate signals for

each of the 256 ADSL DMT subtones, sample, perform a DFT then IDFT and finally filter and

compare with the original pseudo analogue signal.  Physically, this is the same as A/D conversion,

discrete Fourier transformation, multiplication by unity coefficients and addition with zero components

in the frequency manipulation block, inverse discrete Fourier transformation and finally lowpass

filtering on the hardware simulator board.

Various different sets of symbols, symbol periods, carrier frequencies and sampling rates were tested as

described above. Comparison of all the resulting waveforms showed that the original psuedo

continuous signal was perfectly recovered after sampling, transformation and filtering for sampling

rates greater or equal to twice the carrier frequency. In addition when sampling was carried out below

the Nyquist limit, the recovered and original waveforms were distinctly different due to aliasing.

Mathematically this is not difficult, although somewhat laborious, to prove as follows:

1. Form a continuous equation in the time domain describing the QAM waveform using raised cosine

signalling.

2. Sample this waveform by multiplication with a repetitive time impulse function with non-zero

impulses at the desired sampling rate over a user defined time sampling window.

3. Perform a DFT

4. Perform an IDFT, which will give the same data vector as the original time samples because the

DFT and IDFT are inverse operations with both being one to one functions.

5. Filter the IDFT results through repeated convolution in the time domain of all IDFT output

samples with the filter’s continuous impulse response.

This proof is by no means new, but the procedure of verification with Matlab is comforting in that the

processing employed doesn’t fundamentally alter the input signal and therefore in the perfect case

introduces no changes to the signal during processing (zero quantisation noise, constrained periodic

input signal, brickwall filter response).



Chapter 6 Matlab ADSL Signal Models and Transform Verification Andrew Wilkinson

59

6.5 Extension to ‘Simulator’ Simulation

One of the main motivations in writing the custom m-files was to produce a set of functions which

would allow the entire signal processing operation from input to output to be modelled in Matlab to aid

in the development of the future software driver. Such a model can be used from the command line or a

GUI such as Simulink employed using modified functions as block operations. Such as model would

enable the effect of different frequency and time manipulation vectors, sampling rates, quantisation

precision and filtering schemes to be studied before a hardware board is finally constructed.



60

Chapter 7

Initial ADSL Line Simulator

Design

The initial ADSL line simulator design was based solely on signal manipulation in the frequency

domain. At the heart of the design are a FFT, manipulation block and an IFFT. Two implementation

paths using Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA) were

evaluated in terms of five metrics. In order to give an easily re-configurable environment, parameters

describing the access line’s response, noise and crosstalk environment must be continuously

downloadable during a simulation run, either from a pre-computed data store or generated real time

through a PC control interface. A detailed high level design using FPGAs was completed identifying

peripheral signal conversion, logic and memory components.

7.1 Line Simulator Block Functionality

Figure 7.1 shows the basic block functionality of the initial simulator design. As previously mentioned,

signal manipulation for line response, noise and crosstalk, is performed solely in the frequency domain

through frequency filtering and spectral component addition respectively.



Chapter 7 Initial ADSL Line Simulator Design            Andrew Wilkinson

61

Line Attenuation ,
Phase, Noise and

Crosstalk Frequency
Samples from PCADSL Modem (Tx)

POTS splitter POTS splitter
ADSL Modem (Rx)

ADSL PSD
Samples for

Crosstalk Modelling
To PC

Figure 7.1 ADSL line simulator functional block diagram

A/D DFT D/AIDFTFrequency Domain
Manipulation

Analog
Conditioning

Analog
Conditioning



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

62

7.2 Frequency Filter and FFT Implementation

Frequency filtering operates on a block processing principle. Repeatedly over each sampling window,

N consecutive time samples are processed to give a block of N computed frequency samples (positive

and negative). The frequency samples in each block must be multiplied by N complex discrete filter

response samples. The resulting manipulated block of frequency components is then transformed back

to the time domain using an IFFT. Clearly, for real-time simulation, each time a block ‘enters’ the FFT,

a manipulated block must ‘leave’ the IFFT to prevent a build up of blocks requiring manipulation. If all

three processes are carried out within the period of one sampling window, the overall signal will be

subject to just one sampling window delay. However, such a scheme is both computationally expensive

and unnecessary. The three processes of FFT, manipulation and IFFT may be pipelined so that each

takes one time sampling window to compute. The result is a signal delayed by three sampling windows.

The FFT algorithm for an ADSL line simulator must repeatedly compute a 16-bit 1024 point DFT

within one sampling window. At 4.416 MSPS, the sampling window, Tw, of a 1024 point DFT is given

by:

Before any peripheral circuitry can be designed, the practical FFT implementation must be chosen. The

peripheral circuitry for signal conversion, control logic and PC interfacing will essentially be designed

around individual FFT solutions.

Three fundamental hardware approaches to performing the FFT were considered: hardware specific

transform chips, DSPs and FPGAs. Most hardware FFTs are designed to operate in the audio spectrum

and none were found offering the required performance of a 16-bit 1024 point DFT computed within

the 232 µs sampling window.

In order to evaluate the suitability of using a DSP or FPGA to perform the FFT, manipulation and

IFFT, the following five metrics were considered:

1. 1024 point 16-bit FFT / IFFT execution time

2. Chip packaging

3. Prototype and production costs

4. Versatility to implement new simulator functionality with minimal hardware redesign

5. Future adaptability to VDSL line simulation

The first metric, speed of execution, is obviously the most important for either a university or industrial

based project, but the following four would rate differently in terms of importance within different

development teams. For example, chip packaging and prototyping costs are very important to a four

s

f
N

NTT

s

sw

µ232
10x416.4

1024
6

==

=

=



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

63

month MSc project conducted in a setting with no established development hardware, whereas

production cost and future adaptability to VDSL line simulation may be rated more highly in a

commercial organisation with on-going DSL modem design programs.

7.2.1 Implementation Using DSPs

DSPs are basically microprocessors with architectures specifically designed for the repeated arithmetic

operations commonly encountered in performing signal processing functions such as filtering,

correlation and FFTs. As with common microprocessors, the CPU executes machine code instructions

sequentially although some degree of parallelism may be incorporated. Complex mathematical

functions are written either in machine code directly for specific processors, or in a higher level

language such as C which is processor independent, then compiled down to machine code for a specific

DSP architecture. Both machine code libraries specific to individual DSP architectures and higher-level

software libraries exist for almost every signal processing function imaginable.

7.2.1.1 Speed Metric

From the outset, the decision to use a FFT library function or to write one’s own code must be taken.

The execution time of an existing function written in C will vary according to the target DSP

architecture and compiler used. However, benchmark performance figures are generally available with

individual functions on at least one host architecture. Although this will vary on different platforms, the

performance figures give a good initial figure for execution time. Machine code library function

execution times are fairly easy to determine as these are processor specific and will be published with

the number of machine cycles required to run the entire algorithm. With knowledge of the processor

clock period, a simple calculation gives the execution time. Although existing functions are not

necessarily speed optimised, the prospective improvement through writing speed optimised code is

unlikely to be dramatic and without extensive effort may even give reduced performance. Therefore for

assessment of the speed metric, published benchmark performance figures are used.

Table 7.1 lists the execution times of 1024 point 16-bit radix 4 FFT algorithms on a representative

selection of the latest DSP platforms1,2,3.

DSP Software Type
Clock Speed

(MHz)

Execution Time

(µs)

TMS320C6202 Machine Code 250   53

TMS320C6701 Machine Code 167 108

TigerSHARC C 250   41

DSP56600 Machine Code   60 287

Table 7.1 FFT execution times on various DSP architectures



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

64

The first three entries in table 7.1 represent the latest DSP products, either at the product preview or

sample distribution stage. The final entry for the Motorola DSP56600 is a current production device,

released four years ago. The difference in processor clock speeds between the latest and established

DSPs is quite dramatic and shows DSPs have only recently reached performance levels advanced

enough to execute the 1024 point FFT identified for ADSL line simulation within 232 µs on a single

device.

Both the Analog Devices TigerSHARC and the Texas Instruments TMS320C6202 DSPs are fast

enough to implement both the FFT and IFFT functions within one 232 µs sampling period. Using the

TMS320C6202, the 1024 complex (vectored) frequency filter multiplications each require 56 cycles, a

total of 229 µs. In contrast, 1024 complex additions require just 2064 cycles or 8 µs. Clearly, to

implement the transformations and signal manipulation algorithm would require two DSPs.

Alternatively a hybrid solution with a single DSP to perform the transforms and a small FPGA for the

multiplications and additions could be used, shown in figure 7.2.

7.2.1.2 Chip Packaging

Table 7.2 shows the packaging options for the four DSPs identified above.

DSP Package

TMS320C62xx 352 / 348 pin BGA

TMS320C67xx 452 pin BGA

TigerSHARC 400 pin BGA

DSP56600 144 pin QFP / BGA

Modified ADSL
Frequency samples

Output
Time samples

Table 7.2 DSP packaging options

Computed ADSL
Frequency samples

ADSL
Time samples

TMS320C6202

FFT IFFT

FPGA

Frequency Filter Multiplications
Noise / Crosstalk Additions

Figure 7.2 Hybrid DSP / FPGA solution



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

65

7.2.1.3 Prototyping and Production Costs

Since DSP solutions are fundamentally software based, some form of software emulation is required to

verify code before functionality testing is performed on a development board. Both comprehensive

emulation software and development kits cost several thousands of pounds each.

As is seen from table 7.2, the three DSPs capable of meeting the speed requirements are packaged in

very large devices and are not really convenient for prototyping in a university environment with

extremely limited resources.

Unit costs are difficult to determine as silicon suppliers tend to avoid single quantity supply, preferring

instead to offer evaluation samples of devices, then minimum shipments of several tens of units.

Samples may possibly be obtained via a large industrial sponsor such as Fujitsu. Currently the

TMS320C6202 is quoted at $655 per unit with a minimum shipment of 200 units4.

7.2.1.4 Versatility

One of the prime advantages of using a DSP to perform the FFT / IFFT functions is the ease with

which they can be reprogrammed to give new functionality. Even with the hybrid approach of figure

7.2, on The TMS320C6202 there would be approximately 125 µs of ‘free’ processor time available

each time sample window for added functionality.

7.2.1.5 Future Adaptability to VDSL Line Simulation

A quick calculation of the sampling window for the FFT described in chapter 5 of a 2048 point radix 2

FFT, with time samples at 50 MSPS gives

From the DSP benchmarks, a 2048 point radix 2 FFT would take 183 µs to execute on the

TMS320C6202. In terms of the required speed increase to execute the function within the given 41 µs,

a quadrupling of processor speed is required. A more efficient 4096 point radix 4 FFT requires 251 µs

to perform. With a sampling window of 82 µs (4096 samples instead of 2048), real time processing

requires a three-fold increase in computation speed. Considering the increase in clock speeds over the

last four years (from the TMS320C32-60 to the TMS320C6202 and from the SHARC to TigerSHARC

DSPs) a VDSL line simulator will probably be feasible using one DSP to perform the FFT and another

for the IFFT within a few years.

s

f
N

T
s

w

µ41
10x416.4

2048
6 ==

=



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

66

Even if the packaging of new faster DSPs is different to the latest chips from the same manufacturer,

the DSP solution does offer a logical proving ground towards a VDSL simulator.

7.2.2 Implementation Using FPGAs

7.2.2.1 Speed Metric

Unlike DSPs, FPGAs don’t operate on a predefined maximum device clock. Instead, performance is

determined by logic and path delays within a device. As such, it is impossible to accurately predict the

performance of a new design without physically placing and routing it inside a target device. The

design of a complex block such as a large FFT would take an experienced designer many man-hours

and would be a highly iterative process to minimise logic and routing delays. However, the interest in

the possible use of FPGAs to perform FFT functions was spurned by the ‘Core’ program piloted by the

largest FPGA supplier, Xilinx.

The Core program provides many pre-designed and verified functional blocks with guaranteed

execution times on specific target devices. In complex logic designs, an externally driven clock signal

is introduced for synchronous operation so the performance of a particular Core design is given in

terms of a maximum clocking frequency and number of clock cycles required. The minimum clock

period is determined by the maximum critical net and logic delay within the Core design. Appendix 4

includes a list of available Cores and appendix 5 details three Cores of interest: 1024 point FFTs,

parallel multipliers and registered adders.

With reference to the FFT Core data sheets in appendix 5, a 1024 point, 16-bit FFT can be performed

in 17408 clock cycles. Further into the data sheet, an approximate period of 60 ns is given for external

read access timing for the XC4013E-3 device. From the timing diagrams there are two clock periods

for each memory read cycle, giving a clock period of approximately 30 ns (33 MHz) and total FFT

execution time of 522 µs. Targeted at this device, the FFT Core isn’t fast enough for real-time

processing in the line simulator.

The XC4013E-3 is a fairly old device. Xilinx rate their chips with speed grades because, as previously

mentioned, clock speeds only apply to synchronous designs and are different for each design. Two

newer, improved versions of the XC4000 FPGA series have since been introduced, the XC4000XL

series and in 1998 the XC4000XLA series. The XLA grades are claimed to have significant

improvements in maximum clock speeds over the older ‘E’ grades. Figures 7.3 and 7.4 show extracts

from Xilinx literature promoting the E and XLA XC4000 series.

The XC4000XLA speed grade saw the introduction of resources for a special ‘Fast Clock’ in addition

to the standard ‘Global Clock’ resources present in the E grades. Comparison of the Global Clock of

the E-3 and XLA speed grades show a predicted increase in chip speed of approximately 138%

((133 – 56) / 56). If this improvement is seen in targeting the FFT Core to the fastest XLA device, the

execution time should be reduced from 522 µs to just 222 µs, within the target of the time sampling

window.



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

67

Cores also exist for parallel multipliers and scaled adders to implement the signal manipulation.

Multiplication using FPGAs is implemented using lookup tables, whereas digital processors use

repeated addition. With reference to appendix 5, targeted at XC4000E-1 devices, 16-bit by 16-bit

multiplication requires just 5 cycles of the 58 MHz clock, or 86 ns. The multiplication Core deals with

scalars, not vectors, therefore separate multiplications are needed for both the real and imaginary parts

of each of the computed 1024 ADSL frequency samples. In the XC4000E-1 series, the total of 2048

multiplications would take 176 µs, but targeted at the fastest XC4000XLA speed grade the execution

time should fall to about 108 µs (62% speed improvement). The Core multiplies two 16-bit numbers

giving a 32-bit result. Obviously since the physical line is always attenuating, the simulator must

multiply by numbers less than one. This can be achieved by ignoring the lower 16 bits of the result,

shown in figure 7.5.

If the frequency sample to be attenuated is 16-bits wide, then the most significant 16-bits of the result

of a multiplication by 216 is equivalent to a unity multiplication. To attenuate by 2 use a multiplying

coefficient of 216/2 and use the 16 most significant bits of the result only.

Figure 7.3 XC4000E chip speeds

Figure 7.4 XC4000XLA chip speeds

N

Figure 7.5 Multiplication by coefficients < 1

N

16 MSBs

16 LSBs



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

68

The addition Core data sheet in appendix 5 doesn’t include performance figures. However, addition

should be at least as quick as multiplication when implemented using the CLBs of an FPGA. A ball

park figure from the net and logic delay of an N-bit adder5 of 4.5 + 0.35N ns, gives a processing time of

approximately 21 µs for 2048 additions (real and imaginary parts) for the E-3 speed grade.

Combining the processing times for the signal multiplications and additions, using the fastest XLA

grade device both functions can be performed within approximately 130 µs, well within one time

sampling window.

7.2.2.2 Chip Packaging

Each Core design requires a minimum number of CLBs, listed in the relevant data sheet. The smallest

device required for the FFT Core is the XC4013, which is available in 160 pin QFP packaging. For the

manipulation block, the 16-bit area optimised multiplier Core requires 213 CLBs, while the 16-bit

adder needs just 9. The total of 222 CLBs are available in the smallest XLA device, the XC4013XLA,

which contains 576 CLBs.

Commercial, zero insertion force, multiple extraction cycle 160 pin QFP sockets are available with

convenient pin layout which would enable prototyping within a university environment.

7.2.2.3 Prototyping and Production Costs

A total of three XC4013XLA devices are required to implement the FFT, IFFT and manipulation

blocks using Cores. The XC4013XLA-07PQ160C is quoted at £59.99 from MicroCall. In addition to

hardware, the Foundation software design suite is required to generate Cores and finally place and

route in target devices. A single university licensed copy of the full package costs £373 (Normally

$7995).

Both prototyping and production costs for an FPGA implementation are a fraction of that for a DSP

solution.

7.2.2.4 Versatility

Xilinx FPGAs are programmed by a serial bit stream stored in a PROM during the initialisation period

immediately after power up. The internal CLB configuration and hence the functionality of the device

is determined by the content of this bit stream. Therefore, within the limitations of the physical layout

of a FPGA based simulator board, new functionality can be programmed to an existing FPGA device if

sufficient CLB resources are available on that device.



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

69

The FFT / IFFT Cores each utilise approximately 90% of the two XC4013 devices (532 out of 576

CLBs), with the multiplier and adder using 39% of a similar device, so some scope is present for

revised functionality based on a simulator board with three FPGA devices without hardware

modification. Combining the spare resources from all three FPGAs after their Cores have been placed

and routed, approximately 442 CLBs are free for implementing other control and support logic which

may also be required on the simulator board.

7.2.2.5 Future Adaptability to VDSL Line Simulation

A simulator design based on the 1024 point FFT Core is less adaptable to future use for VDSL line

simulation because larger 2048 and 4096 point FFT Cores don’t exist. In addition to this requiring the

in-house development of larger FFT functions, considerably more CLBs would be needed for their

implementation. However, the fundamental signal processing approach could be proved using FPGAs

for the simulation of ADSL lines then a larger VDSL simulator built.

In terms of speed, the VDSL simulation requirement of a 2048 point FFT computed in just 41 µs

implemented using FPGAs requires a projected 10 fold speed increase, considerably more than the

three fold increase required of a DSP solution.

7.2.3 Preferred Implementation

Overall, mainly due to ease of prototyping and cost, the FPGA solution to FFT, IFFT and signal

manipulation is preferred over the hybrid DSP-FPGA solution.

7.3 Overall Line Simulator Design

Once the decision to use FPGAs to implement the simulator’s fundamental functions is taken, an

overall design around these blocks can be made. Extensive reference is made to the FFT Core data

sheet in appendix 5. Figure 7.6 shows the FFT Core Interface from the data sheet.

A block schematic diagram of the complete simulator design is shown in figure 7.7.

Figure 7.6 1024 point FFT interface pinout



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

70

C
on

tr
ol

POTS Splitter

ADSL Modem (Rx)

Multiplication &
Addition Vectors

ADSL Samples
For Crosstalk

ADSL Samples
For Crosstalk

Multiplication &
Addition Vectors

16-bit ADC
4.416 MSPS

1024 x 2
16-bit Dual
Port RAM

1024 Point

DFT

FPGA

1024 Point

IDFT

FPGA

Processing

FPGA

2048 x 2
16-bit Dual
Port RAM

16-bit DAC
4.416 MSPS

SPROM

SPROM

2048 x 4
16-bit Dual
Port RAM

SPROM

PC

Interface

Line Receiver
Module

4th Order
Smoothing

Filter

Line
Transmission

Module

POTS Splitter

ADSL Modem (Tx)

Figure 7.7 Complete high level simulator design

1024 x 2
16-bit Dual
Port RAM

2048 x 2
16-bit Dual
Port RAM



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

71

7.3.1 FFT Core Input Data Conditioning

The basic FFT Core is used to perform both the DFT on blocks of 1024 ADSL time samples and the

IDFT on blocks of 1024 complex manipulated frequency samples. A new transformation as done each

time sample window on a new set of data samples. Since the same FFT Core design is used for both

DFT and IDFT functions, they will be referred to as the FFT and (I)FFT Core respectively.

7.3.1.1 ADC – FFT Interface

The FFT Core requires input data split into two blocks. For the DFT, the first block, called the

LOBLOCK, consists of time samples t(0) to t(N/2 – 1) and the second, the HIBLOCK, consists of time

samples t(N/2) to t(N –1). The FFT Core reads one data word from each block every two FFTCKs. In

addition, the core requires un-interrupted access to both memory blocks. Because the ADC produces

data at a different rate (once every ADCLK) and in a sequential order, each time windowed group of

1024 time samples from the ADC must be buffered and then read in the order and at the rate required

by the FFT Core during the next window period. This can be achieved by loading the time samples

from the ADC into two blocks of dual port RAM organised into two pages. Whilst data from the

converter is being loaded into one page on one side of the dual port RAM, data from the previous

sampling window in the other page will be read by the FFT Core from the opposite side. During the

next sampling window, data from the ADC is loaded into the second page whilst the core performs the

DFT on the 1024 time samples stored in the first page. This process repeats continuously. Conceptually

this arrangement is shown in figure 7.8.

Each block of each page consists of 512 16-bit wide locations. Practically the block structure can be

implemented using just two 1 kByte dual port RAM chips, one for each block. Shown in figure 7.9,

each block contains 2 pages, page 1 extends from address location 0 to 511 with page 2 from location

512 to 1023.

Dual Port RAMADC
4.416 MSPS

16

16

16

16

16

16

16

FFT
Core

INHI

INLO 16
OUT

Figure 7.8 Conceptual memory arrangement for time sample input to the FFT
Core

LOBLOCK: t(0) to t(511)

HIBLOCK: t(512) to t(1023)

16

16
LOBLOCK: t(0) to t(511)

HIBLOCK: t(512) to t(1023)

PAGE 1

PAGE 2



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

72

A single 9-bit parallel output counter can be used to address both pages at the same time with

appropriate block and page selection control, shown in figure 7.10 with associated digital timing in

figure 7.11. The FFTSTART signal for the FFT Core is generated on the rising edge of the

BLOCKSELECT signal which occurs every 1024 ADCLKs (one time sampling window). All the

supporting logic shown in figure 7.10 can easily fit into the spare capacity of the FPGAs after the Cores

have been placed and routed.

7.3.1.2 IFFT – DAC Interface

The ADC samples at 4.416 MSPS, which is also the rate at which samples must be converted by the

DAC. Since the FFT Core reads its input data at a different rate and in a different order to which the

ADC produced it, memory buffering of the time samples is required. In the same way, the order and

rate of data output from the (I)FFT Core is not sequential and not at 4.416 MSPS, so memory buffering

is also required between the (I)FFT and DAC.

After multiplication and addition, the modified 1024 frequency samples must be stored in a similar two

block arrangement to that for the DFT shown in figure 7.9 to allow the (I)FFT Core un-interrupted

access to its own input data. Here, the LOBLOCK consists of the manipulated complex frequency

samples, f(0) to f(N/2 – 1) and the HIBLOCK the samples f(N/2) to f(N – 1). During each window

period, data output from the (I)FFT Core is written to one side of the dual port RAM, whilst data

written to memory from the (I)FFT Core in the previous window is read out to the DAC from the other

side at 4.416 MSPS and in a sequential order. However, whereas the input to the FFT Core is real

valued only, its output is complex with both real and imaginary parts. The output from the

manipulation block is also complex, therefore the storage space required for the (I)FFT Core input is

double that compared with the FFT Core.

Figure 7.9 Practical memory block and page structure

PAGE 1

PAGE 2

LOBLOCK

0

511

1

512

513

1023

tx(0)

tx(1)

tx(511)

tx+1(0)

tx+1(1)

tx+1(511)

Location HILOCK

PAGE 1

PAGE 2

0

511

1

512

513

1023

tx(512)

tx(513)

tx(1023)

tx+1(512)

tx+1(513)

tx+1(1023)

Location

1024 x 16-bit Dual Port RAM 1 1024 x 16-bit Dual Port RAM 2



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

73

Figure 7.10 Circuit diagram for ADC and FFT Core interface

1 FFTCK

0 1 511 512 1023 1024 1535 1536 2047 2048

ADCLK

BLOCKSELECT

PAGESELECT

FFTSTART

Figure 7.11 Digital timing diagram for ADC and input to FFT Core

232 µs

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Sheet: figure 7.10

Date: 08/20/99

LOBLOCK

RAM1024X16

TEMP

HIBLOCK

RAM1024X16

TEMP

FFT

TEMP

COUNTER

T
E

M
P

DIV1024

TEMP

DIV2

TEMP
OSC17488

TEMP

IN
V

INV

INV

MONO

TEMP

ADCONV

TEMP

ADR[0:8]

ADR[8:0]
ADR0

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

BLOCKSELECT

ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

PAGESELECT

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

ADR0
ADR1
ADR2
ADR3
ADR4
ADR5
ADR6
ADR7
ADR8

FFTCK

ADCLK

FFTSTART



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

74

7.3.2 FPGA Initialisation

During an initialisation period, serial data is transferred from  SPROMs to the FPGAs to configure the

devices. Xilinx manufacture specific SPROMs for different sized FPGAs.

7.3.3 PC Interface

Both a complex multiplication vector representing the physical line’s frequency response and complex

addition vectors for noise and crosstalk simulation must be supplied to the processing FPGA during a

simulation run from a controlling PC. The 16-bit 2048 word addition vector (1024 real and 1024

imaginary) must be updated every time sampling window, whereas the same sized multiplication vector

requires loading only once at the start of a simulation run. When a new line is to be simulated, a new

multiplication vector must be downloaded describing the new frequency response. As previously

described, an efficient method to generate self crosstalk is to use a delayed and attenuated copy of the

actual ADSL signal’s DFT itself. To allow complete control of self crosstalk, the complex 1024

computed ADSL frequency samples from the FFT Core should be uploaded to the PC during each time

sampling window, then processed and downloaded as a constituent part of a later addition vector.

Ideally a well defined interface should exist between the simulator board and controlling PC.

Shown previously in figure 7.7, dual port RAM can be used as a store and buffer between the PC

interface and the DFT and processing FPGAs. The RAM used to store both the copy of the ADSL’s

DFT and processing addition vector should operate on a split page mode similar to that described

previously to allow simultaneous read and write operations for consecutive data blocks from opposite

sides of the dual port RAM. The multiplication vector could be stored in single port RAM as only one

download per simulation run is required, but since dual port RAM will be used exclusively elsewhere,

using an identical device will simplify timing and other circuitry.

Much of the device level logic will be very similar in nature to that shown in figure 7.10. To avoid

excessive numbers of circuit level diagrams, only figure 7.7, the high level block diagram of the

complete design is included.

7.3.4 Line Receiver and Transmitter Modules

The output from an ADSL modem will be at voltage levels required for twisted pair transmission. The

final part of a transmitting modem contains an AFE that matches the line and power driver’s

impedance. The first part of a receiving modem will also contain an AFE matching its impedance to

that of the transmission line’s and operate at a suitable sensitivity. The input of the line simulator

should be consistent with that normally seen by a transmitting modem and its output consistent with

that seen by a receiving modem. This requires matching both impedance and signal levels.



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

75

Specific line drivers such as the Analog Devices AD816 differential driver6, designed for use with

ADSL modems, incorporate both transmitter and receiving electronics in a single device and are

suitable for use as the simulator’s line drivers.

7.3.5 ADC and DAC Converters

Both ADC and DAC must generate and convert parallel 16-bit data vectors. Two Analog Devices

converters, the AD9240-EB DAC at £135 and AD768-EB ADC at £104 are both available on fully

populated evaluation boards from the supplier SEI Millenium. The use of evaluation boards obviously

reduces the design time, as board layout and interface circuitry is already optimised by the

manufacturer.

7.3.6 DAC Output Filtering

Between the output from the DAC and line driver, filtering is necessary. From the scant available

details of ADSL modems and AFEs, typically these filters are fourth order with cutoff frequencies of

approximately 1.2 MHz7,8. Because receiving ADSL modems incorporate high order anti-aliasing

filters with similar performance, there is no problem in limiting the spectral output from the simulator

to 1.2 MHz with smoothing filters as anything above this is effectively removed by the receiving AFE

before any A/D conversion takes place in the receiving ADSL modem.

For simplicity, a fourth order analogue Butterworth filler implemented using fast op-amps will be used

to filter the DAC’s output in the line simulator.



Chapter 7 Initial ADSL Line Simulator Design Andrew Wilkinson

76

References
                                                       
1 Texas Instruments, TMS320C6701 Data Sheet SPRS067, May 1998.
  Texas Instruments, TMS320C67x Single Precision Floating Point Assembly Benchmarks, May 1998.
  Texas Instruments, TMS320C6202 Data Sheet SPRS072A, January 1998.
  Texas Instruments, TMS320C62x Assembly Benchmarks, May 1998.

2 Analog Devices, “A New Architecture for the Digital Convergence Infrastructure”, TigerSHARC
  DSP Product Preview and Benchmarks, June 1999.

3 Motorola, DSP56600 DSP Benchmarks, November 1996.

4 SEI Macro Group Ltd, Component Quotation, 26th March 1999.

5 “Estimating the Preformance of XC4000E Adders and Counters”, Xilinx Application Note XAPP
   018, Xilinx, July, 1996.

6 Analog Devices, AD816 500 mA Differential Driver & Dual Low Noise (VF) Amplifiers, Data Sheet,
  1996.

7 ST Microelectronics, STLC60135 TOSCA ADSL DMT  Transceiver, Data Sheet, May 1998.

8 Fujitsu Microelectronics UK Ltd, MB86626 Keywave ADSL AFE, Data Sheet, December 1998.



77

Chapter 8

Revised ADSL Simulator Design

Although the words in Charles Dickens’s book Oliver Twist were written over one hundred years ago,

they deftly conveyed my feelings when on delivery of the Foundation and Core Generator software I

discovered that the FFT Core didn’t actually exist!

This chapter details the revised design of the line simulator using a Xilinx ‘Reference Design’ for a

1024 point FFT in place of the Core design. In addition to new memory interface circuitry between

FPGA blocks, a time manipulation FPGA after the IFFT and a new complete AFE at the final design

stage from Fujitsu including ADC, DAC and filtering are incorporated into the design.

8.1 Overall Revised Simulator Design

Figure 8.1 shows a block diagram of the overall revised line simulator design incorporating additional

time domain manipulation and integrated AFEs. The revised design builds on the transform principles

developed originally, with the only major change being the inclusion of the time manipulation block to

simulate time domain modeled noise components.

In contrast to the FFT Core which split its real 1024 input data points into two blocks (t(0) to t(511) and

then t(512) to t(1023)), the FFT Reference Design splits the real and imaginary components of both

input and output vectors into two separate continuous blocks.

‘Oliver wasn’t as altogether happy as the lucky pig that accidentally
  got locked into the malt house of the local brewery.’

Charles Dickens



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

78

Figure 8.1 Revised ADSL line simulator block diagram

ADSL Samples
For Crosstalk

Time
Addition Vectors

Frequency
Multiplication &
Addition Vectors

ADSL Modem (Tx)

POTS Splitter

POTS Splitter

SPROM

SPROM

SPROM

SPROM

A
D

SL
 S

am
pl

es
Fo

r 
C

ro
ss

ta
lk

C
on

tr
ol

M
ul

tip
lic

at
io

n 
&

B
ot

h 
A

dd
iti

on
 V

ec
to

rs

32-bit Dual
Port RAM
Interface

Frequency

Manipulation

FPGA

AFE
(Including ADC
@ 4.416 MSPS)

32-bit Dual
Port RAM
Interface

1024 Point

IFFT

FPGA

16-bit Dual
Port RAM
Interface

Time

Manipulation

FPGA

AFE
(Including DAC
@ 4.416 MSPS)

16-bit Dual
Port RAM
Interface

32-bit Dual
Port RAM
Interface

16-bit Dual
Port RAM
Interface

16-bit Dual
Port RAM
Interface

1024 Point

FFT

FPGA

PC

Interface

Blue
 Real Data

Red
 Imag’ Data

32-bit Dual
Port RAM
Interface

ADSL Modem (Rx)



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

79

8.2 Xilinx Reference FFT Design

The full data sheet for the 1024 point FFT Reference Design from Xilinx may be viewed on the

enclosed CD. The most salient first four pages are included in appendix 6. The most notable differences

between the new Reference Design and the original FFT Core are as follows

• Radix 4 operation.

• Real and imaginary input and output data vector separation.

• The design requires two banks of 1 k-byte 32-bit external scratch pad RAM.

• Increased processing speed, reducing block processing to within 100 µs.

• Considerably increased CLB count, targeting XC4062 or larger devices.

Figure 8.2 shows the FFT Reference Design pin-out diagram.

Figure 8.2 FFT Reference Design pin-out diagram



Chapter 8 Revised ADSL Line Simulator Design            Andrew Wilkinson

80

19

AD/DA_DAT
A

AD/DA_DAT
A

AD/DA_CLK

XK_R[16] (FFT output)

IO_CYCLE

RESULT

XK_I[16] (FFT output)

K[10]

DONE

FFTCLK

Figure 8.3 Timing diagram for FPGA FFT I/O, ADC and DACs

Complete FFT Process – 5206 CLK Cycles

Final FFT Butterfly Rank Process
Output 1024 Complex ResultsFirst 4 FFT Butterfly Rank Processes

≈

xR(0) xR(256) xR(512) xR(768) xR(64) xR(320) xR(832)xR(576) xR(255) xR(767)xR(511)

≈

xI(0) xI(256) xI(512) xI(768) xI(64) xI(320) xI(832)xI(576) xI(255) xI(767)xI(511)

≈

0 256 512 768 64 320 832576 255 767511

≈

xR(0) xR(256) xR(512) xR(768) xR(64) xR(320) xR(832)xR(576) xR(255) xR(767)xR(511)

≈

xI(0) xI(256) xI(512) xI(768) xI(64) xI(320) xI(832)xI(576) xI(255) xI(767)xI(511)

≈

0 256 512 768 64 320 832576 255 767511

AD/DA_CLK

XK_R[16]

IO_CYCLE

RESULT

XK_I[16]

K[10]

DONE

CLK

DR[16]

DI[16]

DR[16] (FFT input)

Load New 1024 Complex
Data Points for Next Block

≈
≈

DR(0) DR(1) DR(2) DR(3) DR(4) DR(5) DR(7)DR(6) DR(1021) DR(1023)DR(1022)

≈
≈

DI(0) DI(1) DI(2) DI(3) DI(4) DI(5) DI(7)DI(6) DI(1021) DI(1023)DI(1022)

≈
≈

DR(0) DR(1) DR(2) DR(3) DR(4) DR(5) DR(7)DR(6) DR(1021) DR(1023)DR(1022)

≈
≈

DI(0) DI(1) DI(2) DI(3) DI(4) DI95) DI(7)DI(6) DI(1021) DI(1023)DI(1022)

21 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 5204 5205 5206 214179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 5204 5205 5206

Process Block X
Process Input Data Block X

Write Output DFT Data Block X
Read Input Data Block X + 1

Process Block X – 1
Process Input Data Block X – 1

Write Output DFT Data Block X – 1
Read Input Data Block X

Process Block X + 1
Process Input Data Block X + 1

Write Output DFT Data Block X + 1
Read Input Data Block X + 2

1 2 3 11023 10241023 1024

x(0) x(1) x(2) x(1022) x(1023)x(1021)x(3)

10231023

≈
≈

x(1022) x(1023) x(0)

1024 Data Samples – 1024 AD/DA_CLK Cycles

DI[16] (FFT input)



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

81

8.2.1 FFT Reference Design I/O and Control Timing

Figure 8.3 summarises the published I/O and control timing for the FFT Reference Design. The main

points impacting the supporting circuitry are

• The FFT process consists of five Butterfly rank operations.

• The total FFT process requires 5206 FFTCLKS: 5 x 1024 Butterfly rank clock cycles, 17

clock cycles before each rank and one more at the start of each FFT operation.

• During the final rank process, the result is output whilst at the same time, data for the next

FFT block operation is read into one of the scratch pad RAM blocks, alternating between

blocks A and B on subsequent FFT transforms due to the odd number of Butterfly ranks.

• The real and imaginary components of each of the 1024 samples are accessed or output at

the same time, thus requiring only one address bus for each block of scratchpad RAM and

output data buses.

• The FFT doesn’t address the input RAM, the latter is required to produce its data in

chronological order and to the specified timing during the final Butterfly rank process,

whereas the FFT actively addresses the data components of the output results through the

use of a de-scrambling index bus, K.

• Periphery devices are notified of the FFT’s need for new input data or its intention to

write new results through the control strobes: DMA_CYCLE, IO_CYCLE, RESULT and

DONE.

• The FFTCLK theoretically operates at upto 68 MHz, giving a clock period of 15 ns.

8.3 Internal Memory Interfaces

In the initial simulator design, the difference between time sample ordering and generation rate at the

DAC’s output and the required ordering and input rate to the FFT Core gave rise to the need for

memory buffering between the two, operating on a pipelined block processing approach.

Implementation using paged dual port RAM interfaces was developed. A similar situation occurs using

the Reference Design. Conceptually, the full ordering and rate conversion scheme is shown in figure

8.4. Each page of dual port RAM contains 1024 16-bit locations.

8.3.1 Memory Interfaces -  Justification

Fast dual port RAM is expensive, so should only be used where necessary. The following five sub-

sections explain why dual port memory buffering is necessary between the ADC, FFT, frequency

manipulation FPGA, IFFT, time manipulation FPGA and DAC. Reference to the top of figure 8.3

should be made for the control logic timing for the  FFT Reference Design and the bottom  of the  same

figure for general parallel flash A/D and D/A conversion processes when the FFT processing time and

time sampling window are exactly the same.



Chapter 8 Revised ADSL Line Simulator Design            Andrew Wilkinson

82

Figure 8.4 Conceptual memory page structure for ADC, DAC, FFT, IFFT and manipulation FPGAs
(All data lines 16-bit wide)

Time  Manipulation FPGA – DAC
Memory Interface

Analog Output

Analog Input

IFFT – Time  Manipulation FPGA
Memory Interface

Frequency Manipulation FPGA – IFFT
Memory Interface

Real
Page

1

Real
Page

2

Imag
Page

1

Imag
Page

2

Real
Page

1

Real
Page

2

Real
Page

1

Real
Page

2

Imag
Page

1

Imag
Page

2

IFFT

FPGA

FFT

FPGA

DR XR

XI

DR XR

XIDI

DR XR

DI

FFT – Frequency Manipulation FPGA
Memory Interface

Real
Page

1

Real
Page

2

DR XR

Real
Page

1

Real
Page

2

ADC – FFT
Memory Interface

ADC

DAC

Fr
eq

ue
nc

y 
M

an
ip

ul
at

io
n

FP
G

A

T
im

e 
M

an
ip

ul
at

io
n

FP
G

A



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

83

8.3.1.1 ADC – FFT FPGA Interface

From the ADC, time samples are output in chronological order ( x(0), x(1),…,x(1023) ) and generated

at a rate of 1 sample every ADCLK (4.416 MHz), bottom of figure 8.3. The FFT Reference Design

requires its 1024 point input data vector split into real and imaginary components then also reads them

in chronological order, one sample every FFTCLK (≈50 MHz), top of figure 8.3. The real – imaginary

split isn’t a problem between the ADC and FFT FPGA as the time samples are purely real, but the

difference in ADC write and FFT read rates requires sample rate conversion through a memory

interface with pipelined block processing.

8.3.1.2 FFT – Frequency Manipulation FPGA Interface

Unlike common radix 2 bit reversed output ordering, the real and imaginary radix 4 FFT output

frequency samples are in the digit reversed order1 of the form

This order is shown in figure 8.3. These samples are read by the processing FPGA and, if not for the

mismatch in inter-sample FFT write time and manipulation processing delay, could be manipulated in

the order they are produced by the FFT FPGA. The low level designs of chapter 9 will show that 16-bit

multiplication and addition takes approximately 114 ns using Core multipliers and adders (8

PRIMARY_CLKs). However, frequency samples from the FFT FPGA are written once every 29 ns (1

35 MHz FFTCLK) during the last 1024 FFTCLKs of the complete 5206 cycle FFT operation, figure

8.3. Therefore, the frequency samples cannot be manipulated at the rate the FFT FPGA writes them, so

memory buffering for pipelined operation is also required between the FFT and manipulation FPGAs.

8.3.1.3 Frequency Manipulation – IFFT  FPGA Interface

The (I)FFT Reference Design requires chronologically ordered input vectors, (X’(0),

X’(1),…,X’(1023) ) and reads one sample per FFTCLK during the final 1024 IFFT cycles, figure 8.3.

Because the rate at which the manipulation FPGA can write modified frequency samples is limited by

the total manipulation delay of 114 ns, pipelined block processing is required for the manipulation

process and IFFT, with a similar paged dual port RAM solution between the two FPGAs.

8.3.1.4 IFFT – Time Manipulation FPGA Interface

The output from the IFFT will be purely real (unless multiplication of the positive and negative

frequency samples is by non complex conjugate pairs which would result in complex time samples

which can’t be converted to a physical time signal by the DAC anyway) and in the radix 4 order. The

output from the IFFT includes a sample index bus (K in figure 8.3) specifically to de-scramble the

9...,,1,0},0,1{],,,,,,,,,[]10[ 8967452301 =∈= iaaaaaaaaaaaA i



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

84

IFFT output vector, so reordering should occur immediately after the IFFT, justifying the IFFT time

manipulation memory interface.

8.3.1.5 Time Manipulation FPGA – DAC Interface

The DAC requires chronologically ordered samples, spaced by 1 DACLK (equal to the ADCLK). Re-

ordering has already been accomplished and sample output rate conditioning could also be done

through careful timing via the previous memory interface, but without a memory buffer implementing

the block processing approach between the time manipulation FPGA and DAC, the length of time that

samples can spend being processed in the FPGA will be constrained by the DAC data input

requirement of evenly spaced samples at the rate of one per DACLK. In future design developments,

depending on what new operations are configured for the time manipulation FPGA, the time processing

delay may increase from that of simple addition. In order to allow maximum flexibility, a memory

buffer is included between the time manipulation FPGA and DAC, allowing the whole 232 µs block

processing window to be available for manipulation operations on the 1024 real time samples.

8.3.2 Practical Memory Implementation

Practically, the page structure for each of the five interfaces can be implemented in a variety of ways.

Since the real and imaginary components of each vector are always read or written in the same order

and at the same time by any of the four FPGAs (e.g. for the dc frequency component, the FFT FPGA

writes XR(0) and XI(0) at the same time, figure 8.3), only one address bus for each side of each memory

interface is required for both real and imaginary memory blocks. One complex component can be

stored in the least significant 16-bits and the other in the most significant 16-bits of each 32-bit

memory location. Table 8.1 shows some possible RAM implementations. Figure 8.5 shows the page

structure for complex data vectors using a single 2048 location, 32-bit dual port memory chip and

figure 8.6 for a single 2048 location, 16-bit memory chip for the real valued data vectors.

ADC – FFT Interface

IFFT – Time Manipulation Interface

Time Manipulation – DAC Interface

(real data only)

FFT – Frequency Manipulation Interface

Frequency Manipulation – IFFT Interface

(real and imaginary data)

2 x 1024 locations, 16-bit
2 x 1024 locations, 16-bit (for real data)

2 x 1024 locations, 16-bit (for imag data)

(16 MSBs for real data)
2 x 1024 locations, 32-bit

(16 LSBs for imag data)

(16 MSBs for real data)
1 x 2048 locations, 16-bit 1 x 2048 locations, 32-bit

(16 LSBs for imag data)

Table 8.1 Memory interface physical RAM implementations



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

85

8.3.3 Memory Interfaces for PC I/O

The I/O requirements for PC control are similar to the initial design, with an extra set of 1024 point real

addition vectors for the time domain manipulation required from the PC every 232 µs sampling period

window. In order to allow data to be read by the FPGAs during the current processing time window

whilst the PC downloads values for the next, dual port RAM buffering offering paged operation similar

to that previously described can be used. The memory interfaces for PC I/O also provide sample rate

transfer control to both manipulation FPGAs, simplifying the download timing demands on the PC.

With paged memory buffering, the PC only has to download the full set of 512 complex conjugate

multiplication coefficients, 512 complex conjugate frequency addition components and 1024 real time

addition components within each 232 µs sampling window. The PC doesn’t have to download the data

Page 1

Location 16 MSBs16 LSBs

1025

1026

1024 DRealx+1(0)

DRealx+1(1)
DRealx+1(2)

DImagx+1(0)

DImagx+1(1)
DImagx+1(2)

2046

2047

2045 DRealx+1(1021)

DRealx+1(1022)
DRealx+1(1023)

DImagx+1(1021)

DImagx+1(1022)

DImagx+1(1023)

01

02

00 DRealx(0)

DRealx(1)
DRealx(2)

DImagx(0)

DImagx(1)
DImagx(2)

1022

1023

1021 DRealx(1021)

DRealx(1022)
DRealx(1023)

DImagx(1021)

DImagx(1022)
DImagx(1023)

Page 2

Figure 8.5 32-bit memory interface page structure
for real and imaginary data vectors

Location

1025

1026

1024

2046

2047

2045

01

02

00

1022

1023

1021

DRealx+1(0)

DRealx+1(1)
DRealx+1(2)

DRealx+1(1021)

DRealx+1(1022)
DRealx+1(1023)

DRealx(0)

DRealx(1)
DRealx(2)

DRealx(1021)

DRealx(1022)
DRealx(1023)

Page 1

Page 2

Figure 8.6 16-bit memory interface page structure
for real valued data vectors

2048 x 32-bit Dual Port RAM Chip 2048 x 16-bit Dual Port RAM Chip

32 bits 16 bits



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

86

to satisfy the specific timing requirements of each of the manipulation blocks, nor does it have to

upload the crosstalk samples from the FFT block according to their rate of production.

The great advantage of incorporating these PC I/O memory interfaces is to allow future work to define

the timing for the PC interface independently of the simulator’s internal processing operations. Figure

8.1 also shows all the necessary components for PC I/O, which can be practically implemented as

shown in figure 8.5 and 8.6 for the complex and real data vectors.

8.3.4 Page Addressing for Memory Interfaces

In chapter 7, memory page selection was accomplished very neatly through simply deriving a

PAGESELECT signal from the ADC clock. For two 1024 location memory pages (2048 location RAM

chip), the ADCLK should be divided by 2048 and this signal used to drive the most significant address

pin of one side of the 2048 location RAM chip with the other side’s most significant address pin being

driven by its logical inverse, shown below in figure 8.7 and 8.8. With this configuration, the opposite

sides of the dual port RAM are always being written to, or read from, different pages in the paged

storage space. Chapter 9 will present a low level design capable providing synchronous ADC, DAC,

FFT, IFFT and PAGESELECT clocks from a single master oscillator.

PAGESELECT

Address Left

Imaginary Data In

Real Data In DL0

DL15

DL16

DL31

AL0

AL9

AL10

          CLKL

            DR0

            DR15

            DR16

            DR31

            AR0

            AR9

            AR10

          CLKR

16

16

16

16

16

16

PAGESELECT

Real Data Out

Imaginary Data Out

Address Right

2048 x 32-bit Dual Port RAM Chip

Figure 8.7 Page addressing for 2 k-word dual port RAM



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

87

8.4 Processing Operations’ Timing

Each of the six processing operations (A/D conversion, FFT, frequency manipulation, IFFT, time

manipulation, D/A conversion) will be driven by a different frequency clock and will each require a

different number of  cycles of that clock to complete. That is, the FFT and IFFT operations will be

driven by a clock at around 50 MHz and require 5206 cycles, the A/D and D/A conversion operations

will be driven by a 4.416 MHz clock and require 1024 cycles whereas the manipulation processes will

be driven by clocks at around 100 MHz and require a different number of cycles to complete depending

on the internal logic design. Once memory interfaces are placed between each of the six processing

blocks, the blocks can operate separately within each time sampling window period. The only

constraint on each operation is that it must be completed before the start of the next time sampling

window. This greatly eases logic design as each block can be designed to function independently of the

others’ internal timing. Figure 8.9 shows how each operation can take different periods to complete, but

all within the fixed 232 µs time sampling window and also shows the passage of blocks of time

samples through the simulator’s six functional operations. Clearly, a time sample taken by the ADC at

time T0 will be leave the simulator from the DAC 5 sampling windows later.

As mentioned, the operational isolation by memory interfaces allows each functional block to be driven

at its own internal rate, allowing future development of the manipulation blocks without impacting on

the conversion and transform blocks. A single external high frequency master clock can be divided to

drive the AFEs at 17.664MHz, the FFT and IFFTs at around 50 MHz (depending on final logic delays

within the placed FPGA). And the manipulation blocks’ clocks at around 100 MHz, again depending

on the net delays within the FPGAs they are implemented in. All clocks should be chosen to be

multiple of the AFE’s 17.664 MHz clock to allow simple generation by division of the master.

Figure 8.8 Digital timing diagram for memory page selection from the ADC clock

0 1 511 512 1023 1024 1535 1536 2047 2048

ADCLK

PAGESELECT

232 µs



Chapter 8 Revised ADSL Line Simulator Design            Andrew Wilkinson

88

0

T0 + 232 T0 + 464 T0 + 696 T0 + 928 T0 + 1160

ADC block X

FFT block X - 1

IFFT block X - 3

Freq’ Manip block X - 2

ime Manip block X - 4

DAC block X - 5

ADC block X + 1

FFT block X

IFFT block X - 2

Freq’ Manip block X - 1

Time Manip block X - 3

DAC block X - 4

ADC block X + 2

FFT block X + 1

IFFT block X - 1

Freq’ Manip block X

Time Manip block X - 2

DAC block X - 3

ADC block X + 3

FFT block X + 2

IFFT block X

Freq’ Manip block X + 1

Time Manip block X - 1

DAC block X - 2

ADC block X + 4

FFT block X + 3

IFFT block X + 1

Freq’ Manip block X + 2

Time Manip block X

DAC block X - 1

ADC block X + 5

FFT block X + 4

IFFT block X + 2

Freq’ Manip block X + 3

Time Manip block X + 1

DAC block X

Time µs

Sampling Window X Sampling Window X + 1 Sampling Window X + 2 Sampling Window X + 3 Sampling Window X + 4 Sampling Window X + 5

Figure 8.9 Independent operation timing for all six operations over a period of 6 time sampling windows



Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

89

8.5 Analogue Front Ends

Shown in appendix 3 is the advance product preview of the Fujitsu KeyWave AFE. At present the full

data sheet is commercially confidential, but the device is known to be suitable for use in the line

simulator. The pin-out is shown below in figure 8.10.

From the product preview, it is apparent that the IC:

• Is designed as a complete solution for both receivers and transmitters.

• Contains programmable low pass filters with cutoff frequencies upto 1.2 MHz.

• Has dual internal 16 bit 4.416 MSPS ADCs and DACs which can be configured to sample at 4.416

or 8.832 MSPS.

• Has an active rising edge read – write strobe for writing and reading to and from external memory

• Requires a 17.664 MHz external clock signal for timing.

• Only requires an external power line driver and hybrid transformer for connection to a twisted

copper pair.

The Keywave AFE is ideal for both the receiver and transmitter front ends of the line simulator.

References
                                                       
1 E. Oran Brigham, “The Fast Fourier Transform and Its Applications”, Prentice Hall, 1988, p140.

Figure 8.10 KeyWave pinout diagram



90

Chapter 9

Detailed Low Level Design and

Functional Testing

This chapter deals with the low level logic design of the four operations implemented with FPGAs: the

FFT, frequency manipulation block, IFFT and the time manipulation block. Circuitry to implement all

the required functionality is developed including memory addressing and clock division with the

exception of start-up and SPROM initialisation circuitry. Where possible, logic functionality is checked

and post device place and route performance determined. All designs were completed, verified and

timed using the Xilinx Foundation 1.5i and Core Generator software. In addition some consideration is

given to the required memory interface chips with suitable components identified.

The designs presented are in no way the only viable solution. Indeed experienced FPGA logic

designers would be expected to arrive at considerably different and better solutions. Instead they should

be viewed as an initial starting point for further development.

9.1 FFT FPGA

This FPGA performs a FFT on the 1024 time samples stored in the ADC – FFT memory interface each

time sampling window.  The 1024  DFT  frequency  sample results are  written  to the  FFT – frequency



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: FFFTADDR

Sheet: FFFTADD1

Date: 08/20/99

IPAD
IBUF

IPAD
BUFGP

OBUF
OPAD

OBUF
OPAD

OPAD10O[9:0]

OBUF10

I[9:0] O[9:0]

INV

CR16CE

C

CE

CLR

Q[15:0]

OPAD

OBUF

AND16

I1

I10

I11

I12

I13

I14

I15

I16

I2

I3

I4

I5

I6

I7

I8

I9

O

AND2

INV

IN
V

O
R

2

FDSR

C

D Q

R

S

IBUF

AND2

INV

INV

INV

INV

INV

INV

INV

INV

INV

IPAD

AND2INV

INV

INV

INV

INV

INV

IP_ADDR[9:0]Q[9:0]

Q[15:0]

BLOCK_START

CLK_2

FFTEN

FFTCLK

Q14

ADDRESS_RESET

READ
DMA_CYCLE

Q15

Q13

Q12

Q11

Q9

Q8

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

Q10

Figure 9.1 FFT additional control circuitry for real time data input from the ADC - FFT memory interface

Chapter 9 Low Level Design Andrew Wilkinson

91



Chapter 9 Low Level Design Andrew Wilkinson

92

manipulation FPGA memory interface.

All FFT FPGA schematic, simulation and associated files are located in the

:\Designs\Xilinx\Fft \fftref \fftaddr and \fftmem subdirectories on the enclosed

CD ROM.

9.1.1 Peripheral Circuit Requirements

As mentioned in chapter 8, the FFT Reference Design doesn’t actively address its input memory. Logic

is required to provide a read strobe and the address bus to the memory interface between the ADC and

FFT, which serves the same purpose as the host data server shown in the Reference Design data sheet

(on CD ROM). Page selection for the memory interfaces is external to the FFT FPGA design.

9.1.2 Logic Design

The FFT Reference Design produces a strobe called DMA_CYCLE when new input data is required

during the last Butterfly rank process, which lasts for the duration of the transfer then goes low. This

signal can simply be gated with the FFTCLK to produce a read strobe, which will be active only when

the DMA_CYCLE is asserted high by the FFT. The rising edge of the DMA_CYCLE signal can also

initiate a binary counter for the address bus, which is reset on a count of 1024. Figure 9.1 shows

circuitry to produce the necessary address bus and control signaling for time sample input data from the

ADC – FFT memory interface.

In addition to the input control timing circuitry, the FFT block requires its scratchpad RAM data and

address buses to be synchronously registered. The data buses must also be converted to bi-directional

operation for interfacing to external tri-state RAM. Figure 9.2 showing the complete FFT FPGA

design, includes two macros TRI_BUFF_32 and OFDX10 to achieve this.

9.1.3 FFT FPGA Design Verification

After the problems encountered with the Core FFT, it seemed wise to verify the operation of the

Reference Design before finalising its use within the simulator. Operational testing can be carried out

in three parts:

• Firstly, verify that the control signal timing corresponds to that shown on the published

data sheet.

• Secondly, verify that the FFT transform function is correct through the transform of a

1024 point real input data vectors and comparing the results with those generated for the

same input vectors by a numerical package such as Matlab.

• Thirdly, verify timing and addressing for the input RAM circuitry.



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: FFTREF

Sheet: FFTREF1

Date: 07/29/99

U2

FFTWRAP

Vhdl code
AUTO

CLK

CE

DMA_IN_PROGRESS

DONEDMA

IO_CYCLE

MEM

OBUF_TA

OBUF_TB

RESULT

RAMB_WR

RAMA_WR

RAMB_CS

RAMA_CS

RAMB_OE

RAMA_OE

RS

START

DR[15:0]

DI[15:0]

DA_R[15:0]

DA_I[15:0]

DB_R[15:0]

DB_I[15:0]

DOA_R[15:0]

DOA_I[15:0]

DOB_R[15:0]

DOB_I[15:0]

XK_R[15:0]

XK_I[15:0]

K[9:0]

RAMA_A[9:0]

RAMB_A[9:0]

U3

TRI_BUFF_32

IN_A[15:0]

IN_B[15:0]

C
LK C

E

TRI

OUT_B[15:0]

OUT_A[15:0]
Q_A[15:0]

Q_B[15:0]

U4

TRI_BUFF_32

IN_A[15:0]

IN_B[15:0]

C
LK C

E

TRI

OUT_B[15:0]

OUT_A[15:0]
Q_A[15:0]

Q_B[15:0]

OFDX10

OFDEX10

D[9:0]

CE

C

Q[9:0]

OFDX10

OFDEX10

D[9:0]

CE

C

Q[9:0]

IPAD

IPAD

IPAD

IPAD

IPAD

BUFGP

BUFGP

BUFGP

BUFGP

IBUF OBUF

OBUF

OBUF

OBUF

OPAD

OPAD

OPAD

OPAD

OPAD

L
L
U
P

U
PL

L
U
P

U
P

OPAD
OBUF

OBUF

OPAD16
O[15:0]IBUF16

OPAD16
O[15:0]IPAD16

I[15:0]

IPAD16
I[15:0]

IBUF16

OBUF16

OBUF16

IOPAD16
IO[15:0]

IOPAD16
IO[15:0]

IOPAD16
IO[15:0]

IOPAD16
IO[15:0]

OPAD

OBUF

OBUF

OBUF

OBUF

OPAD

OPAD

OPAD

OPAD10O[9:0]

OBUF10
I[9:0] O[9:0]

OPAD10
O[9:0]

OPAD10
O[9:0]

HOST_DI[15:0]

HOST_DR[15:0]

DOA_R[15:0]
DIA_R[15:0]

DOA_I[15:0]
DIA_I[15:0]

DOB_R[15:0]
DIB_R[15:0]

DOB_I[15:0]
DIB_I[15:0]

DBUSB_I[15:0]

DBUSA_I[15:0]

DBUSA_R[15:0]

DBUSB_R[15:0]

K[9:0]

A_ADDR[9:0]

XK_R[15:0]

XK_I[15:0]

B_ADDR[9:0]

RAMA_A[9:0]

RAMB_A[9:0]

DMA

AUTO_RUN

START

MEM

IO_CYCLE

OBUF_TA

OBUF_TB

RAMA_WR

RAMA_OE

RAMA_CS

RAMB_CS

RAMB_OE

RAMB_WR

DONE

RESULT

DMA_CYCLE

RS

FFTCLK

FFTEN CE

CLK

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.2 Complete FFT transform engine design

93



Chapter 9 Low Level Design Andrew Wilkinson

94

Unfortunately, the FFT Reference Design doesn’t produce a behavioural model for the function, so

only gate level simulation after the generation of a supplementary EDIF file is possible. This approach

is extremely time consuming due to the very large design. From circuit modification to completion of a

basic single 1024 point FFT simulation without scratchpad RAM, a processing time in excess of four

hours is encountered using a PII 300 MHz processor. In addition, no suitable memory blocks of 1024 x

32-bit RAM for scratchpad use don’t exist in Xilinx libraries, so FFT transform functionality can’t be

cleanly tested without custom design of suitable memory blocks for inclusion in a schematic design.

Because of the large size of such memory blocks (2 x 1024 by 32-bits), the simulation time would be

enormous. An alternative to inserting scratchpad RAM into the schematic design is to verify the FFT

transform through a complex simulation command file which mimics the behaviour of the RAM. The

command file must record temporary process data output from the FFT Butterfly ranks on complex

data buses DBUSA and DBUSB (figure 9.2), then re-inject it into the FFT engine as the scratchpad

RAM would do when addressed by the FFT engine in an actual physical circuit. There is no easy way

to do this with the Xilinx Foundation software other than by observing the address and data buses of

the scratchpad RAM through each Butterfly rank process and then copying the values into the

command file for re-injection to the FFT engine in the following rank process, carefully noting the

read/write ordering from the address buses.  This is extremely laborious and took over a day to write

the command file required to test a single complete 1024 point FFT transform.

9.1.3.1 FFT Reference Design Control Timing

Control timing verification is by far the easier of the three verification steps. The command file

fftref_control_verification.cmd in the fftref directory on the CD contains a

command file written to simulate an initial data vector load into the FFT engine, then a complete 5206

clock cycle 1024 point, followed by another 5206 cycles to verify the repetitive nature of the control

timing for a second FFT operation. The simulation can be re-run or the results viewed from the file

fft_ct_v.tve as simulation file takes about an hour to complete. Close examination of the control

strobes and address buses confirm the published control timing and addressing.

9.1.3.2 FFT Reference Design Discrete Fourier Transform

As previously mentioned, transform functional verification is not easy in the Foundation design

environment. The first method of including scratchpad RAM into a design schematic with the FFT

Reference Design was initially attempted. Custom 1024 by 32-bit RAM was constructed from primitive

library components and is included in the fftmem subdirectory on the CD, but is far too large and

numerous to print! Unfortunately, this approach wasn’t successful due to compilation faults when

running the simulation software – this may be due to the shear size of the combined FFT block and

memory as the Foundation software is written for designs which can fit into a single FPGA.

The second method of writing a complex simulation command file to mimic the action of the

scratchpad RAM was reluctantly embarked upon. Due to the time consuming nature of this approach,

only one transform has been tested; that of a simple sampled sinusoidal signal. Ideally the transform for



Chapter 9 Low Level Design Andrew Wilkinson

95

many different input sample vectors should be simulated and each result compared with that generated

by Matlab for the same input vector before the functional integrity of the transform can be assured.

The simulation command file fftref_transform_verification.cmd contains the script to

simulate the FFT on a sampled sinusoid, with the scratchpad RAM data written by the FFT engine

during the transform stored in the files A_BR1.dat, B_BR2.dat, A_BR3.dat, B_BR4.dat and

A_BR5.dat. The associated waveforms are stored in the file fft_tf_v.tve. Again, the simulation

takes about an hour to complete. The Excel file fftref_transform_verification.xls

tabulates the data written to the scratchpad RAM by the FFT engine during the five Butterfly rank

processes in the order in which it is read back into the FFT, as well as the final transform result.

The simulation is for the FFT of a real set of 1024 time samples from a sinusoid with 128 cycles within

the 1024 point sampling window, of the form

where the sinusoid time samples shown repeat 128 times within the time sampling window. The DFT

of such a signal should be purely imaginary with just two non-zero components of 0.5i at frequency

sample +128 and –0.5i at sample 896 (equivalent to –128 with a 1024 point transform). Examination

of the FFT output vectors on data buses XK_R and XK_I from the simulation waveform shows

that the FFT Reference Design’s result doesn’t match the correct values for the DFT of an input

vector describing the sampled sinusoid. Instead the FFT Reference Design seems to produce a set of

32 non-zero imaginary frequency samples of +0.5i at frequency samples 192 through 207 and –0.5i at

samples 384 through 399. This is somewhat difficult to explain. The result, which contains only

imaginary components, is consistent with the correct DFT for a real, odd time function such as the sine

wave. Even the nature of the imaginary result seems indicative of a DFT having occurred (only two

imaginary magnitudes of 0.5i and 0i), but the placing and sixteen times replication of the non-zero

samples are incorrect.

Contact with the Design’s author, Dr. Chris Dick of Xilinx, hasn’t resolved the problem. It seems he

hasn’t done a complete simulation using the Foundation tools for the reasons iterated concerning

scratchpad memory requirements and behavioural models. Dr. Dick has performed a transform using a

Viewlogic simulation tool called ‘Viewsim’, unavailable to myself. A copy of the e-mail from Dr. Dick

is included in appendix 7 and worth reading. The author suggests a new FFT design targeted at the

Virtex series of devices instead of continuing with the XC4000 Reference Design. The Virtex FPGAs

really are enormous, with upto 6 144 CLBs and 130 kbits of RAM compared to the largest

XC4085XLA device containing 3 316 CLBs and no additional RAM. Virtex gate counts exceed 1

million compared to just over 100 000 for the XC4082XLA. The use of Virtex devices would solve all

the simulation problems as a single design could also include scratchpad RAM. Unfortunately, the

Virtex FFT design hasn’t been released to date, but potentially provides a good transform solution.

9.1.3.3 Input RAM Addressing and Control

The  command  file  fft_input_address_verification.cmd in the  fftaddr subdirectory

....]7071.0,1,7071.0,0,7071.0,1,7071.0,0,7071.0,1,7071.0,0,7071.0,1,7071.0,0[)( −−−−−−=skTx



Chapter 9 Low Level Design Andrew Wilkinson

96

simulates two complete time sampling windows. The address and timing waveforms may be viewed

are stored from the file fftaddr.tve.

9.1.4 FFT Performance

Although actual transform functional verification hasn’t been achieved, performance has been

evaluated both before and after FPGA device placement and routing. Pre-routing performance is

determined from the logic delay and estimated path delays within the design. Post routing performance

includes the actual net delays encountered when the design has actually been placed within a target

FPGA. Using the fastest XC4082XLA-07HQ240 device the maximum FFT clock frequencies are:

Timing Analysis Maximum Clock Frequency

Pre place and route 69 MHz

Post place and route 42.3 MHz

The large difference in pre and post performance is due to the absence of a User Constraints File (UCF)

during the Foundation place and route operation. UCF files tell the Foundation design compiler which

paths need to be timed ‘together’, which can be ignored and which are most critical. It is somewhat

surprising that no UCF file is supplied with the FFT Reference Design. Because the design is only

shipped as overall FFT macro and doesn’t include the basic files (the net level files) from which the

overall block is constructed, it is difficult to write a UCF file without guessing which constraints to

apply to the paths identified in the Foundation timing reports. However, with trial and error, the post

place and route clock frequency should approach the limit of 69 MHz. Even at 42 MHz, the complete

1024 point FFT execution time is just 125 µs (5205 x 24 ns), clearly within the 232 µs time sampling

window. If future development for VDSL line simulation use the FFT Reference Design, an optimal

UCF to maximise the FFT clock frequency at 69 MHz will be required giving an execution time of 75

µs.

9.1.5 IFFT FPGA

As the functional integrity of the FFT Reference Design hasn’t been proved, the design of the IFFT

module has been left to further work. The internal structure of the IFFT logic will be very similar to

that for the FFT module taking into account appropriate FFT / IFFT scaling.

Table 9.1 Pre and post place and route FFT performance



Chapter 9 Low Level Design Andrew Wilkinson

97

9.2 Frequency Manipulation FPGA

Each time sampling window, the frequency manipulation FPGA multiplies the 1024 16-bit complex

DFT frequency samples with 1024 16-bit complex coefficients then adds the result to another 1024 16-

bit complex numbers, downloaded from the controlling PC in the previous sampling window.

All schematic, simulation and other files for the frequency manipulation FPGA are located in the

:\Designs\Xilinx\frqmanip directory on the enclosed CD.

9.2.1 Peripheral Circuit Requirements

As shown in figures 8.3 and 8.4, the 1024 DFT frequency samples are stored in sequential order in

paged dual port RAM. The complex samples are separated into real and imaginary parts, each complex

component occupying 16-bits of a 32-bit wide memory word. The manipulation block reads and

modifies these samples then writes them to its output memory interface. The manipulation block must

provide addressing for the input and output RAM from which the frequency samples are read from and

written to. In addition, the block must address the PC memory interfaces holding the multiplication and

addition vectors downloaded in the previous sampling window from the PC. Memory page selection is

external to the manipulation block.

The three memory interfaces containing input data for the frequency manipulation process must be

sequentially addressed and strobed with a read pulse. The memory interface to which the results are to

be written must be similarly addressed and provided with a suitably timed write strobe after each

manipulation result is available. Figure 9.3 shows the address and read/write strobe timing for

frequency manipulation process.

BLOCK_START

Complete manipulation process

232 µs sampling window (1024 ADCLKs)

Single sample
processing time

Address
000 001 002 3FE 3FF

≈
≈ 000

≈
≈

Read

Write

Figure 9.3 Frequency manipulation addressing and read / write strobe



Chapter 9 Low Level Design Andrew Wilkinson

98

9.2.2 Logic Design

9.2.2.1 Arithmetic Functions

The two arithmetic functions of addition and multiplication can be implemented using the Cores

described in appendix 5. Two sets of 16-bit operation can be combined in parallel to allow the separate

real and imaginary complex components to be manipulated at the same time, shown in figure 9.4. The

eight data buses are as follows:

A_LO – Real DFT samples (input)

B_LO – Real multiplying coefficients (input)

C_LO – Real addition components (input)

A_HI – Imaginary DFT samples (input)

B_HI – Imaginary multiplying coefficients (input)

C_HI – Imaginary addition components (input)

RESULT_LO – Manipulated real DFT sample (output)

RESULT_HI – Manipulated imaginary DFT sample (output)

Attenuation is achieved through the method of ignoring the 16 LSBs of the result of the 16-bit

multiplication of A and B. No account of carries produced by the addition process is included because

this should never actually occur in practical use.

Each multiplication requires five clock cycles, with additions just one. Therefore, the result write strobe

must occur at least six cycles after the read strobe.

9.2.2.2 Timing Functions

Each sample manipulation requires at least six clock cycles to perform. However, if eight cycles are

allocated to each operation, the read and write strobe signals are easily derived by dividing the

manipulation clock by eight (23). Each new 1024 sample frequency manipulation process is initiated by

the assertion of the global BLOCK_START timing strobe, figure 9.3. After this strobe, the

manipulation timing logic must produce 8 x 1024 (8192) clock cycles to complete the operation before

the start of the next sampling window.

The required number of clock cycles are produced by gating the external clock with a control signal

which is set high on the falling edge of the BLOCK_START signal and reset low after the 8192 cycles

have been completed. A simple 16-bit library binary counter is used to count the number of cycles,

with bits 4 to 13 acting as the address bus (effectively the clock divided by eight and counted). A 16-bit

AND gate is used to generate the ADDRESS_RESET pulse after 8192 cycles have occurred. The read

strobe is produced at the start of every eight clock cycles simply by dividing the manipulation clock by

eight, and the write edge derived from the output from the third bit of the binary counter. Figure 9.5

shows logic to produce these timing signals.



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: FREQ_MANIP

Date: 08/15/99

U5

MULT16

COREGen Module
A[15:0]

B[15:0]

PROD[31:0]

C

CE

U2

ADDF16

COREGen Module
A[15:0]

B[15:0]

S[16:0]

C

CE

CI

CLR

N
W
O
D

L
L
U
P

N
W
O
D

L
L
U
P

U3

ADDF16

COREGen Module
A[15:0]

B[15:0]

S[16:0]

C

CE

CI

CLR

U4

MULT16

COREGen Module
A[15:0]

B[15:0]

PROD[31:0]

C

CE

N
W
O
D

L
L
U
P

N
W
O
D

L
L
U
P

A_LO[15:0]
B_LO[15:0]

PROD_LO[31:16]

C_LO[15:0]

RESULT_LO[15:0]

RESULT_LO[16:0]

A_HI[15:0]
B_HI[15:0]

PROD_HI[31:16]

C_HI[15:0]

RESULT_HI[15:0]

RESULT_HI[16:0]

CLK

CE

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.4 Frequency manipulation arithmetic functions

99



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: FREQ_MANIP_ADDRESSING

Date: 08/15/99

CR16CE

C

CE

CLR

Q[15:0]

IN
V

IN
V

IN
V

AND2

L4

CLK_DIV
CLK_EN

CLK_OUTCLOCK

IN
V

O
R

2

FDSR

C

D Q

R

S

INV

AND2

L1

OUT

O[9:0] P[9:0]

H2

I1I1
0

I1
1

I1
2

I1
3

I1
4

I1
5

I1
6 I2I3I4I5I6I7I8I9

O

IN
V

IN
V

IN
V

IN
V

IN
V

IN
V

IN
V

IN
V

IN
V

IN
V

IN
V

BUF

Q[12:3]

Q[15:0]

ADDR[9:0]

Q0

READ

BLOCK_START

ADDRESS_RESET

CLK

MANIP_CLK

Q14 Q12 Q10 Q8 Q6 Q4

WRITE

Q1Q3Q5Q7Q9Q11Q13Q15 Q2

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.5 Frequency manipulation addressing and timing functions

100



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: FRQMANIP

Sheet: FRQMANI1

Date: 08/15/99

IBUF

IBUF

U2

FREQ_MANIP

A_HI[15:0]

A_LO[15:0]

B_HI[15:0]

CE

CLK

C_LO[15:0]

B_LO[15:0]

C_HI[15:0]

RESULT_HI[15:0]

RESULT_LO[15:0]

H2

FREQ_MANIP_ADDRESSING

BLOCK_START

CLK

ADDR[9:0]

MANIP_CLK

READ

WRITE

IBUF16

IBUF16

IBUF16

IBUF16

IBUF16

IBUF16

OBUF16

OBUF16

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

OPAD16
O[15:0]

OPAD16
O[15:0]

L1

OUT

O[9:0] P[9:0]
H3OPAD10O[9:0]

OPAD

OPADOBUF

OBUF

IPAD

IPAD

IPAD

IBUF

A_LO[15:0]

B_LO[15:0]

B_HI[15:0]

C_HI[15:0]

C_LO[15:0]

A_HI[15:0]

RESULT_LO[15:0]

RESULT_HI[15:0]

ADDR[9:0]

CE

BLOCK_START

INTERNAL_MANIP_CLK

CLK

WRITE

READ

PRIMARY_CLK

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.6 Frequency manipulation complete circuit

101



Chapter 9 Low Level Design Andrew Wilkinson

102

Figure 9.6 shows the combination of arithmetic and timing functions into a single unit.

9.2.3 Functionality Testing and FPGA Placement

Complete functionality testing has been undertaken on the overall frequency manipulation block. On

the CD there is a command test file frqmanip_verfication.cmd which can either be re-run, or

the result’s waveform viewed directly from the file frqmanip.tve. The waveform file shows the

exact read/write and address timing.

The complete frequency manipulation block can be placed in the smallest XC4013XLA device and

uses only 13% of the CLBs. This would allow the time manipulation function to also be placed within

the same physical FPGA to reduce costs. In addition, other board logic can easily be placed in the same

device as long as one with enough I/O pins is chosen.

9.2.4 Performance

Using the XLA-07 speed grade, post placement timing analysis suggests a maximum clock frequency

of 125 MHz, in which case each manipulation of 1024 samples would be completed in approximately

65 µs. Bearing in mind the external clock generation of all components, a manipulation clock at 70.656

MHz  (22 x 17.664) will give a complete process execution time of just 116 µs, well within the 232 µs

the sampling window limit.

9.3 Time Manipulation FPGA

Each time sampling window, the time manipulation operation adds 1024 real numbers downloaded

from the PC during the previous sampling window and stored in one of the PC memory interfaces, to

the 1024 real time samples produced by the IFFT operation, again in the previous sampling window

and stored in the IFFT – time manipulation FPGA memory interface.

All schematic, simulation and other files for the time (and frequency) manipulation FPGA are located

in the :\Designs\Xilinx\allmanip directory on the enclosed CD.

9.3.1 Peripheral Circuit Requirements

The processed time samples from the IFFT and addition components from the PC are stored in

sequential order in their respective memory interfaces. The time manipulation block must provide

addressing and read/write strobes exactly the same as for the frequency manipulation block.



Chapter 9 Low Level Design Andrew Wilkinson

103

9.3.2 Logic Design

9.3.2.1 Arithmetic Functions

The arithmetic functions of the time manipulation block are just a simplified version of those for the

frequency manipulation block, incorporating only a single 16-bit adder. Figure 9.7 shows the circuitry

for the time manipulation adder.

9.3.2.2 Timing Functions

Because there are spare CLBs in the frequency manipulation FPGA, the time manipulation circuitry

can be placed within the same FPGA. Although using a Core adder each addition operation takes only

one clock cycle, the timing circuitry of the frequency manipulation block can be used to address the

time manipulation block’s memory interfaces, thus eliminating the need for additional circuitry. Figure

9.8 shows the combination of frequency and time manipulation blocks.

9.3.3 Functionality Testing

Complete functionality testing has been undertaken on the overall time and frequency manipulation

blocks. The command test file allmanip_verification.cmd can be re-run, or the results

viewed directly from the file allmanip.tve.

9.4 Clock and Page Select Circuitry

9.4.1 Clock Signals

The various components of the simulator board require different clock frequencies. Three global

clocks, external to the FPGAs and continuously running, are defined as follows:

• PRIMARY_CLK 70.656 MHz

• CLK_2 35.328 MHz (PRIMARY_CLK / 2)

• CLK_3 17.664 MHz (PRIMARY_CLK / 4)

These three clocks will be internally gated  and divided as required within each FPGA to provide the

necessary clocking for each functional block. Figure 9.9 shows the derivation of the three global clocks

from an external oscillator, reproduced from the CD directory :\Designs\Xilinx\Clocks.



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: [None]

Macro: TIME_MANIP

Date: 08/17/99

U2

ADDF16

COREGen Module
A[15:0]

B[15:0]

S[16:0]

C

CE

CI

CLR

N
W
O
D

L
L
U
P

N
W
O
D

L
L
U
P

RESULT_ADD[15:0]

RESULT_ADD[16:0]

A_ADD[15:0]

B_ADD[15:0]

CLK

CE

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.7 Time manipulation arithmetic functions

104



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: ALLMANIP

Sheet: ALLMANI1

Date: 08/17/99

IBUF

IBUF

U1

FREQ_MANIP

A_HI[15:0]

A_LO[15:0]

B_HI[15:0]

CE

CLK

C_LO[15:0]

B_LO[15:0]

C_HI[15:0]

RESULT_HI[15:0]

RESULT_LO[15:0]

H1

FREQ_MANIP_ADDRESSING

BLOCK_START

CLK

ADDR[9:0]

MANIP_CLK

READ

WRITE

IBUF16

IBUF16

IBUF16

IBUF16

IBUF16

IBUF16

OBUF16

OBUF16

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

OPAD16
O[15:0]

OPAD16
O[15:0]

L1
OUT

O[9:0] P[9:0] H2OPAD10O[9:0]

OPAD

OPADOBUF

OBUF

IPAD

IPAD

IPAD

IBUF

H3

TIME_MANIPA[15:0]

B[15:0]

CE

CLK RESULT[15:0]

IBUF16

IBUF16

OBUF16 OPAD16
O[15:0]

IPAD16
I[15:0]

IPAD16
I[15:0]

A_LO[15:0]

B_LO[15:0]

B_HI[15:0]

C_HI[15:0]

C_LO[15:0]

A_HI[15:0]

RESULT_LO[15:0]

RESULT_HI[15:0]

ADDR[9:0]

A_ADD[15:0]

B_ADD[15:0]

RESULT_ADD[15:0]

CE

BLOCK_START

INTERNAL_MANIP_CLK

CLK

WRITE

READ

PRIMARY_CLK

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.8 Time and frequency manipulation complete circuit

105



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: CLOCKS

Sheet: CLOCKS1

Date: 08/20/99

CLK_IN70656KHZ

IPAD
BUFGP

L1

DIV2
CLK_DIV

CLK_OUTCLOCK

L2

DIV2
CLK_DIV

CLK_OUTCLOCK

OBUF

OBUF

OBUF

CLK70656KHZOPAD

CLK35328KHZOPAD

CLK17664KHZOPAD

EXTERNAL_OSC PRIMARY_CLK

CLK_2

CLK_3

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.9 External global clock generation

106



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

G G

H H

 Xilinx Corporation

2100 Logic Drive

San Jose, CA 95124

Project: PAGING

Sheet: PAGING1

Date: 08/20/99

IPAD
BUFGP

L4

DIV4
CLK_DIV

CLK_OUTCLOCK

OPAD

INV OBUF

OPAD

OBUF

L6

DIV2048
CLK_DIV

CLK_OUTCLOCK
CLK_3

NOT_PAGE_SELECT

PAGE_SELECTQ10

CLK_4416_KHZ

Chapter 9 Low Level Design Andrew Wilkinson

Figure 9.10 Memory interfacce paging circuitry

107



Chapter 9 Low Level Design Andrew Wilkinson

108

9.4.2 Memory Interface Paging

As described in chapter 8, memory interface page selection is easily achieved by dividing the 4.416

MHz ADC clock by 2048. With the use of AFEs instead of basic ADCs, the A/D conversion process

clock is 17.664 not 4.416 MHz, therefore the page selection circuitry shown in figure 9.10 and stored in

the directory :\Designs\Xilinx\Paging, initially divides the global CLK_3 by four. The

simulation command file page_select_verification.cmd generates the waveforms in the file

page_sel.tve.

The appropriate PAGE_SELECT and NOT_PAGE_SELECT signals must be connected to each side of

all memory interfaces, those between simulator functional blocks and PC interfaces, as shown in

figures 8.1 and 8.4.

9.5 Memory Chips

Two types of memory components are needed for the simulator board: dual port RAM for memory

interfaces and ordinary single port scratchpad RAM for the FFT Reference Design. The main criteria

for component selection are of course access time, data word width and storage depth.

9.5.1 Interface Memory

One of the main functions of the memory interfaces is rate conversion between writing and reading

from opposite sides of the RAM. Dual port RAM chips can be strobed either by a single clock on

which data transfer occurs on both sides, or each side can be driven by separate clocks working

asynchronously. The simulator memory must be of the latter type to allow reading and writing at

different rates.

One potential problem with dual port RAM is the possibility of peripheral circuitry on opposite sides of

the device addressing the same location at the same time. More expensive chips can handle this

situation allowing access to the same location either during the same clock cycle through a priority

mechanism or by delaying one side’s access by temporarily buffering data until the next clock cycle.

More basic chips have no mechanism for access conflicts. One advantage of the page structure is that

locations can’t be simultaneously read to and written from at the same time as the peripheral circuitry

on opposite sides of the RAM are always working on separate pages of the storage space. This

simplifies memory selection for the interfaces reducing device selection solely to access time and

capacity considerations.

The simulator’s memory interfaces can be classed into two types, those storing complex data and those

for real data only. The former requires 32-bit, whereas the latter requires just 16-bit wide RAM.

Regardless of the complex or real nature of the data, each interface requires a total of 2048 locations,

equivalent to two pages each of 1024 locations. Recourse to the FFT Reference Design’s timing



Chapter 9 Low Level Design Andrew Wilkinson

109

diagrams show that read and write accesses occur in single FFT clock cycles. Running on the global

clock, CLK_2, the FFT interface memory must have access times better than 29 ns. The manipulation

operations running at the PRIMARY_CLK require interface access times better than 14 ns

The largest manufacturer of dual port RAM is Cypress Semiconductor, producing devices of both 16

and 32-bit widths. Table 9.2 identifies two suitable devices for the real data 16-bit and complex data

32-bit interfaces.

Device Data Width and Depth Access Time

cy7c09389v1 16 bits x 16 k 7.5 – 12 ns

cy7c09579v2 32 bits x 8 k 5 – 8 ns

9.5.2 FFT / IFFT Scratchpad RAM

The FFT scratchpad RAM requires 32-bit by 1024 location single port memory, operating at the FFT

clocking rate. Any synchronous RAM with access times better than the FFT clocking period (29 ns at

35 MHz) will suffice. Since so many manufacturers produce suitable RAM, device selection is until

board construction.

9.6 Low Level Design Summary

The FFT Reference Design with registered address and tristate data buses for scratchpad RAM use,

associated input RAM address bus and control circuitry and internal clock gating can all be placed in a

single 240 pin QFP XC4062XLA-07HQ240 device. Overall clocking at between 42 and 69 MHz is

projected from design simulation within the Xilinx Foundation software environment. For the ADSL

simulator, the global 35 MHz CLK_2 clock is used to give a complete 5206 cycle execution time of

149 µs. Transform results appear to be incorrect, with further testing required before a definitive

conclusion can be drawn. The IFFT block hasn’t been designed because of the doubt concerning the

Reference Design’s integrity, but will be virtually identical to that for the FFT.

Both time and frequency manipulation blocks with all associated addressing and control signals for I/O

memory interface data transfer have been completed. Functional verification confirms the arithmetic

integrity of both operations. Both blocks fit into a single XC4013XLA-07HQ240 device. Operation at

upto 125 MHz is possible, but reduced to the 70 MHz PRIMARY_CLK rate for the ADSL simulator.

A complete set of 1024 frequency manipulation complex additions and multiplications require 9 632

cycles giving an execution time of 137.6 µs. The time manipulation circuit runs from the frequency

Table 9.2 Suitable memory interface devices



Chapter 9 Low Level Design Andrew Wilkinson

110

manipulation clock to reduce logic overhead and therefore takes the same time to execute a complete

set of 1024 real additions.

Paging and global external clock generation circuitry providing page selection and three free-running

clock signals at 70.656, 35.328 and 17.664 MHz, can all fit within the XC4013 FPGA used for the

manipulation circuits.

References
                                                       

1 Cypress Semiconductor, CY7C09569V FLEx36TM Dual-Port Static RAM, Data Sheet,
   February 13, 1999.

2 Cypress Semiconductor, CY7C09389V Synchronous Dual-Port Static RAM, Data Sheet,
   November 23,1998.



111

Chapter 10

Conclusions

This chapter presents an overview of the initial research into DSL simulator requirements, appropriate

signal processing techniques, implementation options and two specific designs. Finally, a brief

discussion of the simulator’s extension to full and bandwidth limited VDSL systems is presented.

10.1 The Modelling Requirement

A simulator emulating a twisted copper access pair at DSL frequencies must adequately model the

line’s physical impairments of insertion loss and phase shift, and also the effects of noise and crosstalk

from other access lines within the same bundle.

10.1.1 Physical Line Effects

Insertion loss and phase shift are functions of conductor diameter, access reach and frequency.

Theoretical development of a line’s attenuation and its effect on a signal’s phase from the four primary

line characteristics of inductance, capacitance, inductance and resistance lead to transfer function

expressions for insertion loss and phase response or shift. Theoretical results closely match those

experienced on real DSL lines and can be used as a basis for determining the physical line modelling

requirements.

Over DMT ADSL bandwidths and reach, total insertion losses of upto 62 dB can be expected. For

VDSL systems operating at upto 20 times the frequency, but at greatly reduced reaches, losses as high



Chapter 10 Conclusions Andrew Wilkinson

112

as 120 dB occur.  For a given length of twisted copper pair, the rate of change of insertion loss with

frequency is greatest at lower frequencies. For example on a 6 kft 26 gauge PIC line, the insertion loss

changes by 34 dB between DC and 1.25 MHz and by just 14 dB between 1.25 and 2.5 MHz (figure

4.1).

Unlike insertion loss, phase shift changes linearly with frequency (figure 4.3). Over even the shortest

reach, the phase undergoes many rotations over both the ADSL and VDSL bandwidths. The full phase

rotation bandwidth for short 1 kft lines is approximately 275 kHz and just 23 kHz for longer 12 kft

pairs (table 4.3).

Although only a reproduction of material in chapter 3, the complex nature of the twisted copper pair’s

response over 10 MHz is shown below as its nature is crucial to the simulation signal processing

approach taken.

Figure 10.1 Insertion loss for 26 gauge PIC twisted copper pair

Figure 10.2 Phase shift for 26 gauge PIC twisted copper pair over ADSL bandwidth



Chapter 10 Conclusions Andrew Wilkinson

113

10.1.2 Crosstalk and Noise

At extended DSL transmission frequencies, crosstalk from other access lines becomes significant.

Crosstalk can be classified into two types: self and foreign. Self crosstalk is an induced signal from and

disturber of the same access type whereas foreign crosstalk is due to a disturber of a different access

type. For example, self ADSL crosstalk occurs between two ADSL lines within the same bundle

whereas foreign crosstalk occurs between ADSL and ISDN lines.

DSL modem receivers incorporate sharp bandpass filtering, so in the absence of non-linear

intermodulation distortion, only crosstalk within the DSL transmission bandwidth of the modem under

test is significant because any out of band crosstalk is rejected by the receiver.

In addition to crosstalk type, the nature of its induction is also classified as Near End CrossTalk

(NEXT) or Far End CrossTalk (FEXT). However, this is irrelevant to the line simulator hardware as

NEXT and FEXT crosstalk incident on a receiver can’t be distinguished (ignoring the case of ‘self’

induced self NEXT whereby a receiver could distinguish the difference because of the correlation

between the signal it is transmitting and that which it is receiving due to crosstalk). Rather, the software

to drive the hardware would take into account the nature of NEXT and FEXT in generating a realistic

crosstalk model.

Both AGWN and coloured bandpass noise are incident on DSL lines. For the same reason as crosstalk,

only noise occupying the relevant DSL spectrum need be simulated.

10.2 Signal Processing Methods

Signal modification in the frequency domain provides possibly the only method of simulating the

physical line’s response due to the tight control required over phase, shown in figure 10.2. The method

of signal manipulation in the frequency domain, known as frequency domain filtering, has long been

practised in the field of medical CT and MRI scanning where processing is non-real time. The principle

of multiplying each DFT signal sample with a complex filter coefficient at that frequency is both

simple to understand and elegant. The main reason for its limited use in the telecommunication’s arena

is the need to compute a frequency domain description of the signal using a DFT before any

manipulation can take place and then to transform the result back to the time domain with an IDFT.

Once time – frequency and the reverse transformations can be computed in real time (i.e. in the same

time it takes to sample the N points of the transform, known as the time sampling window), frequency

filtering offers a very powerful tool.

In addition to modelling the line’s physical response, noise and crosstalk that are both fundamentally

additive in nature, can be modelled in the frequency domain by the simple addition of complex

components to each DFT sample.



Chapter 10 Conclusions Andrew Wilkinson

114

Initially simulation by signal manipulation solely in the frequency domain was developed. However,

some noise, especially impulsive noise is more readily described in the time domain through addition to

time samples. The revised simulator design includes an additional time domain manipulation block.

Generation of crosstalk in a hybrid time and frequency domain simulator can be achieved by either the

addition of suitable DSL line code time samples at the time manipulation stage or through the addition

of suitably modified discretised PSD masks in the frequency domain. The latter method can be used to

simply simulate self crosstalk through the addition of an attenuated and delayed copy of the actual

ADSL signal from the modem under test. Foreign crosstalk can be simulated through the addition of

the theoretical or measured PSD of a foreign disturbing signal, a simpler approach than the generation

and addition of specific line codes in the time domain.

10.3 DFT Requirements

The requirements for the DFT used within the simulator consist of the maximum transform frequency

resolution or cell size, the amplitude precision (i.e. quantisation interval) and the transform

computation time for real time simulator operation.

The frequency transform resolution determines the accuracy to which the discrete model of the line and

transmission process reflects the actual continuous line. For the physical line effects, an initial figure of

a maximum 10% difference between the continuous line’s response and the discrete model’s constant

response over any transform cell was considered.

DSL systems incorporate frequency division multiplexing to allow POTS to co-exist alongside data

transmission at higher frequencies. This coupled with the strict bandpass filtering of the modem

receivers, allows the line’s behaviour at frequencies below the lowest frequency used by the DSL

modulation scheme to be ignored. ADSL’s FDM with the POTS is fortuitous as concerns the size of the

required DFT, as the greatest variation of insertion loss occurs in the 30 kHz band reserved POTS

(figure 4.1).  VDSL’s FDM is with both POTS and ADSL, allowing the spectral band from DC to

about 1.2 MHz to be ignored. The FDM nature of DSL transmission gives rise to the concept of the

first relevant transform interval for simulation as being the first DFT cell within the DSL PSD, not

from DC (section 4.1.1 and table 4.2).

ADSL simulator systems require at least 256 transform cells over the 1.1 MHz bandwidth giving a

maximum transform cell size of 4.3125 kHz due to insertion loss (table 4.2) and coincidentally the

same considering phase shift (table 4.5, strictly for 6 kft lines only). VDSL systems with a greater

bandwidth, but first relevant transform interval from just above the 1.1 MHz ADSL spectrum, require

at least 741 transform cells over the 20 MHz transmission bandwidth.

In addition to the physical line effects, the DFT cell size’s effect on crosstalk modelling must also be

considered. For DMT systems, in order to model crosstalk and noise within a particular transmission

bin, the discrete representation of the signal must have at least one sample across that bin’s local

bandwidth. ANSI DMT ADSL, the only developed or proposed DMT system, has 256 subcarriers



Chapter 10 Conclusions Andrew Wilkinson

115

spaced at 4.3125 kHz, therefore the DFT employed must have at least 256 samples across the 1.1 MHz

ADSL bandwidth and spaced at the 4.3125 kHz DMT frequencies. The same arguments don’t apply to

single ‘carrier’ CAP ADSL and CAP/QAM VDSL systems. In the absence of stricter needs, the

insertion loss and phase shift requirements for ADSL were assumed sufficient to model crosstalk and

noise for these other two systems. Overall, the most stringent requirement arising from insertion loss,

phase shift and crosstalk modelling requirements must be implemented. For DMT ADSL systems, all

three maximum transform cell requirements were equal at 4.3125 kHz.

 In addition to the minimum Nyquist sampling rate of twice the required maximum observable

frequency, sampling guard bands are required, thus increasing the necessary A/D conversion rate. For

real time simulation, Fast Fourier Transforms are required. When radix 2 or 4 FFT algorithms are used

and sufficient sampling guard bands included, the simulator transform parameters in table 10.1 result.

Sampling Rate Transform Size

DMT ADSL 4.416 MSPS 1024 point (radix 2 or 4)

CAP ADSL 4.416 MSPS 1024 point (radix 2 or 4)

VDSL 50 MSPS
2048 point (radix 2)

4098 point (radix 4)

Quantisation precision must be at least as good as that used in the modems attached to the simulator. A

minimum of 15 to 16-bits is required.

10.4 Implementation Paths

Of the three methods of implementing the FFT and IFFT processes considered, DSPs and FPGAs were

found viable. After extensive research into performance, ADSL simulation using either technology was

thought to be possible. VDSL simulation is currently not feasible without extensive parallel processing

techniques. Implementation with DSPs is possibly the most versatile interms of the ease of functional

evolution without hardware redesign and extension to VDSL simulation. However, the development

and production costs and suitability of development within the university environment favour the

FPGA implementation route.

FFT modules for both solutions exist in the form of software code for DSP platforms and Reference

logic designs for FPGAs, avoiding the need for complex and time consuming customised transform

engine design.

Table 10.1 FFT Transform Parameters



Chapter 10 Conclusions Andrew Wilkinson

116

10.5 ADSL Line Simulation Using FPGAs

A simulator board based around Xilinx FPGAs using the FFT Reference Design to provide both the

FFT and IFFT functions and with separate time and frequency manipulation blocks requires three

separate FPGA processing devices. With three FPGAs, sufficient unused logic capacity exists to

implement all necessary memory addressing, read / write and control strobing, memory interface

paging and local and global clock circuitry. Dual port RAM memory interfaces between each

functional block allows both independent operation within the confines of each time sampling window

limit and a pipelined block processing approach. Designing individual blocks is greatly simplified by

this timing independence, as internal timing considerations are local to the individual operations

themselves. In addition, although there is a question mark over the validity of the results produced by

the FFT Reference Design, different replacement FFT and IFFT engines can easily be used in the

modular design with memory interfacing. The use of ADCs and DACs within ADSL AFEs simplifies

the analogue and conversion side of the design.

Functionality testing of the manipulation blocks confirmed arithmetic operation and process execution

times within the 232 µs time sampling window. Functionality testing of the FFT Reference design

resulted in an invalid result for a real valued odd sampled sinusoidal input vector. Timing analysis

confirmed the transformation process is also completed well within the sample window limit.

Each transform block fits into XC4062XLA-07HQ240 FPGAs with all manipulation circuitry into the

smaller XC4013XLA-07HQ240 FPGA. Chip costs are £498 for the two XC4062XLA devices and £60

for the XC4013XLA from MicroCall Ltd.

10.6 Further Work

The major question remaining before a prototype ADSL simulator can be built is whether the FFT

engine does indeed produce invalid results. The use of ready made Xilinx FFT designs has been

problematic to say the least and it is difficult to see how extensive testing can be carried out on the

transform operation because of the lack of a complete, ‘clean’ FFT module that includes the necessary

scratchpad RAM to simulate within the Foundation environment. However, if the new Virtex targeted

FFT materialises and includes behavioural models, this is probably the best path to follow as it is

doubtful whether much support for the XC4000  FFT Reference Design can be gained.

If neither the current FFT Reference Design or new Virtex design proves suitable, there is always the

possibility of designing a purpose built transform engine.

In addition to finalising the FFT engines, the PC interface needs to be developed and well documented

to allow separate development of the associated hardware. The software driver for the board needs to

be written, a major task requiring close collaboration with companies developing new modems to

determine the required simulation functionality. An accurate line simulation through appropriate



Chapter 10 Conclusions Andrew Wilkinson

117

multiplication and addition vectors for the physical line, crosstalk and noise, will require access to a

physical access line for experimental test measurements.

10.7 Towards a VDSL Line Simulator

The main hurdle to an economically viable solution to VDSL line simulation is speed of FFT / IFFT

processing. Without an approximate trebling of DSP processing speed or ten-fold increase in FPGA

speeds, currently the only method of implementing the simulator would be to use FFT processes which

take several time sampling windows to compute, and have several FFT engines working on subsequent

separate windows of data concurrently. In this way, if the FFT took say four sample windows to

complete, a total of four processing engines would be required. This is perhaps not surprising when one

considers that although DMT is by far the more versatile modulation scheme compared to QAM / CAP,

signal processing has only recently reached the level where DMT functionality can be viably

incorporated into consumer electronic ADSL modems.

Towards the end of the project some discussion with Fujitsu brought forward the idea of a limited

bandwidth VDSL simulator. Tentative figures for modems operating upto frequencies of the order of 5

to 6 MHz at 1 kft were suggested. Sampling at 13 MSPS (6 MHz observable spectrum with a 0.5 Mhz

guard band), a 1024 sample window is 79 µs long. If the FFT Reference design is found to be correct,

targeted at the fastest XLA device, FFT processing times of 75 µs are predicted by the Foundation

place and route software, clearly such a simulator is feasible now.



118

Appendices



119

Appendix 1

Calculation of Magnitude and Phase Characteristics of 26

Gauge PIC Twisted Copper Pairs

From The transfer function of the twisted copper pair

The real and imaginary parts of the propagation constants and by separated

Since the imaginary exponential term has unity magnitude, it only contributes to the phase response of

the line, hence:

The constants α0 and β0 are related to the primary line characteristics by

fxe
fV
xfV

fH γ−==
)(

),(
)(

0

fxjfx

xjx

fjx

ee

ee

efH

00

)()(

βα

βα

βα

−−

−−

+−

=

=

=

xfH

efH fx

0))((

)( 0

βφ

α

=

= −

LC

L
C

k

πβ

α

20

0

=

=



Appendix 1 Calculation of Magnitude and Phase Characteristics Andrew Wilkinson
                    of 26 Gauge PIC Twisted Copper Pairs

120

The constant k is directly proportional to the resistivity of the access pair due to the skin effect above

about 100 kHz and can be determined from experimental measurements of resistance made to

determine the primary R characteristic. From the first graph in figure 2.1, k can be calculated either

from the gradient or evaluation at a point where the measured resistance is proportional to the root of

frequency (over 100 kHz). Using the later method, at 100 kHz, R ≈ 30 Ω, therefore since

For 26 gauge twisted copper pair, the graphs of the primary line characteristics give,

The transfer function magnitude is therefore

In decibels, the insertion loss for a length of x kft is given by

The phase response in radians for the same line is

mHL

nFC

205.0

25.15

=
=

135978.0

000100

30

)(

)(

=

=

=

=

k

f

fR
k

fkfR

xfefH 001173.0)( −=

xfedbLoss 001173.0log10)( −=









= −

)0000111.0sin(

)0000111.0cos(
tan)2/())(( 1

xf
xf

fH πφ



121

Appendix 2

Matlab Version 5 ‘ginput’ Function

» version

ans =

5.0.0.4069

» help ginput

 GINPUT Graphical input from mouse.

    [X,Y] = GINPUT(N) gets N points from the current axes and returns

    the X- and Y-coordinates in length N vectors X and Y.  The cursor

    can be positioned using a mouse (or by using the Arrow Keys on some

    systems).  Data points are entered by pressing a mouse button

    or any key on the keyboard except carriage return, which terminates

    the input before N points are entered.

    [X,Y] = GINPUT gathers an unlimited number of points until the

    return key is pressed.

    [X,Y,BUTTON] = GINPUT(N) returns a third result, BUTTON, that

    contains a vector of integers specifying which mouse button was

    used (1,2,3 from left) or ASCII numbers if a key on the keyboard

    was used.



122

Appendix 3

Fujitsu ADSL AFE Product Preview



Product Preview
FML/MS/ADSLAFE/PV/4078

MB86626 December 1998

KeyWave™AFE ADSL Analog Front End Version 1.4

This Product Preview is intended to introduce a new product concept being considered by Fujitsu. The document is subject to 
change and does not represent a commitment by Fujitsu to develop the product.

Copyright © 1998 Fujitsu Microelectronics UK Limited       Page 1 of 2

Typical Applications

Full Rate ADSL (G.dmt)
Central Office   Remote Terminal

Tx

Rx

Trim

Tx/EC
Rx data

Passive
Hybrid

Ref. Clock
17.664MHz

A
D

S
L M

odem

Transmit
Line Driver

   
   

Twisted
Pair line

PGA   PGA   

Voltage
Reference

DAC

Serial
Control I/F

Clock
Generator

D
ata Interface

DAC

ADC

ADC
PGA   PGA   

VCXO Control

Configuration and
control interface

Tx

Rx

Trim

ECin

ECout

Passive
Hybrid

VCXO
17.664MHz

AD
SL M

odem

Transmit
Line Driver

   
   

Twisted
Pair line

PGA   PGA   

Voltage
Reference

DAC

Serial
Control I/F

Clock
Generator

D
ata Interface

DAC

ADC

ADC
PGA   PGA   

VCXO Control

Configuration and
control interface

Tx/EC
Rx data

Features
• Integrates all active circuits except Transmit line 

driver

• Programmable for G.dmt or G.lite (2 channel at 
CO, or 1 plus Analog modem function at RT) 

• Low power, 3.3V operation - from 235mW/ch 
(2 channel CO G.lite) to 525mW (RT G.dmt)

• Integrated 15-bit A/D & D/A converters

• 0 to +38 dB AGC range

• Supports analog and digital echo cancellation

• 0.35µm CMOS technology with Triple Well

• Industrial temperature range (-40 °C to +85 °C)

• Plastic package 80-pin LQFP

• Compatible with POTS and ISDN

Description

The Fujitsu MB86626 is an analog front end for

ADSL modems. The device integrates high

resolution analog to digital converters (ADC) and

digital to analog converters (DAC), and combined

with active filtering significantly reduces the

requirements placed on external components.

The architecture supports both analog and digital

echo cancellation (EC). The MB86626 KeyWave

AFE is ideal for cost sensitive Remote Terminal

equipment (RT) and power sensitive Central

Office equipment (CO). Flexible configuration is

incorporated to address future ADSL derivatives

(e.g. G.lite, splitterless, Universal ADSL).



FML/MS/ADSLAFE/PV/4078
December 1998    Version 1.4

MB86626 KeyWave™AFE

This Product Preview is intended to introduce a new product concept being considered by Fujitsu. The document is subject to 
change and does not represent a commitment by Fujitsu to develop the product.

Copyright © 1998 Fujitsu Microelectronics UK Limited       Page 2 of 2

ADSL (G.lite)
Central Office (2 lines)   Remote Terminal

Worldwide Headquarters

Japan Fujitsu Limited Asia Fujitsu Microelectronics Asia 
Pte Limited

Tel:
Fax: 

+81 44 754 3753
+81 44 754 3329

1015 Kamikodanaka 4-1-1
Nakahara-ku
Kawasaki-shi
Kanagawa-ken 211-88
Japan

Tel:
Fax:

+65 281 0770
+65 281 0220

151 Lorong Chuan
#05-08 New Tech Park
Singapore 556741

http://www.fujitsu.co.jp/ http://www.fmap.com.sg/

USA Fujitsu Microelectronics Inc Europe Fujitsu Mikroelektronik GmbH

Tel:
Fax:

+1 408 922 9000
+1 408 922 9179

3545 North First Street
San José CA 95134-1804
USA

Tel:
Fax:

+49 6103 6900
+49 6103 690122

Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany

Tel:
Fax:

+1 800 866 8608
+1 408 922 9179

Customer Response Center
Mon-Fri: 7am-5pm (PST)

http://www.fujitsu-ede.com/

http://www.fujitsumicro.com/

Tx 1

Rx 1

Rx 2

Ref. Clock
17.664MHz

A
D

S
L M

odem

Transmit
Line Drivers

   
   

PGA   PGA   

Voltage
Reference

DAC

Serial
Control I/F

Clock
Generator

D
ata Interface

DAC

ADC

ADC
PGA   PGA   

VCXO Control

Configuration and
control interface

Tx 2    
   Tx/EC

Rx data

To
 P

as
si

ve
 H

yb
rid

 L
in

e
In

te
rfa

ce
s

Tx

Rx

Trim

Passive
Hybrid

VCXO
17.664MHz

AD
SL M

odem

Transmit
Line Driver

   
   

Twisted
Pair line

PGA   PGA   

Voltage
Reference

DAC

Serial
Control I/F

Clock
Generator

D
ata Interface

DAC

ADC

ADC
PGA   PGA   

VCXO Control

Configuration and
control interface

Tx/EC
Rx data Analog Modem

(option)



125

Appendix 4

Xilinx Cores



 

R

        

Product Listing by Application 
Segment 

February 8, 1998
Standard Bus Interfaces

Peripheral Component Interconnect Bus

Function CORE Solution Source Page

PCI Master & Slave Interfaces 2.0 LogiCORE Xilinx 2-11

PCI Master & Slave Interfaces 1.2.0 LogiCORE Xilinx 2-19

PCI32 Spartan Master & Slave Interfaces LogiCORE Xilinx 2-29

Synthesizable PCI Bridge Design Example LogiCORE Xilinx 2-35

PC-Card Bus (PCMCIA)

Function CORE Solution Source Page

PCMCIA Fax/Modem Macro AllianceCORE Mobile Media Research 3-15

PCMCIA Library R 1.2 AllianceCORE Mobile Media Research 3-19

PCMCIA Prototyping Card AllianceCORE Mobile Media Research 3-23

PCMCIA Card Debugger/Exerciser AllianceCORE Mobile Media Research 3-25

PCMCIA CIS Generator 1.2 AllianceCORE Mobile Media Research 3-27

Universal Serial Bus

Function CORE Solution Source Page

Low-Speed USB Function Controller AllianceCORE Mentor 3-29

Full-Speed USB Function Controller AllianceCORE Mentor 3-33

3-Port USB Hub Controller AllianceCORE Mentor 3-37

USB Function Evaluation Board AllianceCORE Mentor 3-41

USB Hub Evaluation Board AllianceCORE Mentor 3-43

USB Simulation Model AllianceCORE Mentor 3-45

Other Standard Bus Products

Function CORE Solution Source Page

ISA Plug and Play Interface Reference Design Xilinx 5-3

XF-TWSI Two-Wire Serial Interface (IIC) AllianceCORE Memec Design Services 3-9
February 8, 1998  1-13



Product Listing by Application Segment
Digital Signal Processing

Communications and Networking

Correlators

Function CORE Solution Source Page

One Dimensional RAM-Based Correlator LogiCORE Xilinx 2-45

One Dimensional ROM-Based Correlator LogiCORE Xilinx 2-41

Filters

Function CORE Solution Source Page

Comb Filter LogiCORE Xilinx 2-49

16-Tap, 8-Bit FIR Filter Reference Design Xilinx 5-3

Serial Distributed Arithmetic FIR Filter LogiCORE Xilinx 2-51

Dual-Channel Serial Distributed Arithmetic FIR 
Filter

LogiCORE Xilinx 2-55

Parallel Distributed Arithmetic FIR Filter LogiCORE Xilinx 2-59

Transforms

Function CORE Solution Source Page

DFT Core (Real Data In, Complex Data Out) LogiCORE Xilinx 2-65

FFT Core  (1024 Points) LogiCORE Xilinx 2-69

DSP Building Blocks

Function CORE Solution Source Page

SDA FIR Control Logic LogiCORE Xilinx 2-73

Sine/Cosine LogiCORE Xilinx 2-75

Non-Symmetric, 16-Deep Time Skew Buffer LogiCORE Xilinx 2-77

Non-Symmetric, 32-Deep Time Skew Buffer LogiCORE Xilinx 2-81

Symmetric, 16-Deep Time Skew Buffer LogiCORE Xilinx 2-85

Asynchronous Transfer Mode

Function CORE Solution Source Page

Cell Assembler (CC-201) AllianceCORE CoreEl Microsystems 3-49

Cell Delineation (CC-200) AllianceCORE CoreEl Microsystems 3-53

CRC10 Generator and Verifier (CC-130) AllianceCORE CoreEl Microsystems 3-57

CRC32 Generator and Verifier (CC-131) AllianceCORE CoreEl Microsystems 3-61

UTOPIA Slave (CC-141) AllianceCORE CoreEl Microsystems 3-85
 1-14 February 8, 1998



Base-Level Functions

Forward Error Correction

Function CORE Solution Source Page

Reed-Solomon Decoder AllianceCORE Integrated Silicon Systems 3-71

Reed-Solomon Encoder AllianceCORE Integrated Silicon Systems 3-77

Viterbi Decoder AllianceCORE CAST 3-91

Telecommunications

Function CORE Solution Source Page

HDLC Protocol Core AllianceCORE Integrated Silicon Systems 3-65

MT1F  T1 Framer AllianceCORE Virtual IP Group 3-81

Basic Elements

Function CORE Solution Source Page

Clock Divider LogiBLOX Xilinx 4-4

Comparator LogiBLOX Xilinx 4-4

Constant LogiCORE Xilinx 2-91

Constant LogiBLOX Xilinx 4-4

Counter LogiBLOX Xilinx 4-4

Loadable Binary Counter Reference Design Xilinx 5-4

Ultra-Fast Synchronous Counter Reference Design Xilinx 5-4

Accelerating Loadable Counters Reference Design Xilinx 5-4

Data Register LogiBLOX Xilinx 4-4

Decoder LogiBLOX Xilinx 4-4

Frequency/Phase Comparator for PLL Reference Design Xilinx 5-5

Simple Gates LogiBLOX Xilinx 4-4

Harmonic Frequency Synthesizer and FSK 
Modulator

Reference Design Xilinx 5-5

Input/Output LogiBLOX Xilinx 4-4

Multiplexer LogiBLOX Xilinx 4-4

Multiplexers, Barrel Shifters Reference Design Xilinx 5-3

Two Input  MUX LogiCORE Xilinx 2-93

Three Input  MUX LogiCORE Xilinx 2-95

Four Input MUX LogiCORE Xilinx 2-97

Parallel to Serial Converter LogiCORE Xilinx 2-99

Pulse-Width Modulation Reference Design Xilinx 5-5
February 8, 1998  1-15



Product Listing by Application Segment
Function CORE Solution Source Page

Register LogiCORE Xilinx 2-101

Serial Code Conversion between BCD
 and Binary

Reference Design Xilinx 5-5

Shift Register LogiBLOX Xilinx 4-4

Tristate LogiBLOX Xilinx 4-4

Math Functions

Function CORE Solution Source Page

1's and 2’s Complement LogiCORE Xilinx 2-103

Accumulator LogiBLOX Xilinx 4-4

Scaled by 1/2 Accumulator LogiCORE Xilinx 2-105

Adder/Subtracter LogiBLOX Xilinx 4-4

Adders, Subtractors, Accumulators Reference Design Xilinx 5-3

Registered Adder LogiCORE Xilinx 2-107

Registered Loadable Adder LogiCORE Xilinx 2-109

Registered Scaled Adder LogiCORE Xilinx 2-111

Registered Serial Adder LogiCORE Xilinx 2-113

Integrator LogiCORE Xilinx 2-115

Constant Coefficient Multiplier LogiCORE Xilinx 2-117

Constant Coefficient Multiplier (Pipelined) LogiCORE Xilinx 2-119

Parallel Multipliers, Area Optimized LogiCORE Xilinx 2-121

Parallel Multipliers, Performance Optimized LogiCORE Xilinx 2-125

Square Root LogiCORE Xilinx 2-127

Registered Subtracter LogiCORE Xilinx 2-129

Registered Loadable Subtracter LogiCORE Xilinx 2-131

Basic Elements

Memories

Function CORE Solution Source Page

Delay Element LogiCORE Xilinx 2-133

FIFOs in XC4000 RAM Reference Design Xilinx 5-4

Register-Based FIFO Reference Design Xilinx 5-4

Synchronous FIFO LogiCORE Xilinx 2-135

16-Word Deep Registered Look-Up Table LogiCORE Xilinx 2-139

32-Word Deep Registered Look-Up Table LogiCORE Xilinx 2-141

Registered Synchronous RAM LogiCORE Xilinx 2-143

Registered ROM LogiCORE Xilinx 2-145

ROM, RAM, Synch-RAM, Dual Port RAM LogiBLOX Xilinx 4-4

4Mb Virtual SPROM Reference Design Xilinx 5-5
 1-16 February 8, 1998



Processor Products

Function CORE Solution Source Page

Dynamic Microcontroller Reference Design Xilinx 5-4

TX400 Series RISC CPU Cores AllianceCORE T7L Technology Inc. 3-97

RISC CPU Core Design Base Board AllianceCORE T7L Technology Inc. 3-103

Scalable Development Platform Integrated 
Software

AllianceCORE T7L Technology Inc. 3-107

V8 uRISC 8-bit RISC Microprocessor AllianceCORE VAutomation 3-109

IntelliCoreTM Prototyping System AllianceCORE VAutomation 3-115

Processor Peripherals

Function CORE Solution Source Page

C2910A Microprogram Controller AllianceCORE CAST 3-129

Configuring FPGAs over a Processor Bus Reference Design Xilinx 5-5

M8237 DMA Controller AllianceCORE Virtual IP Group 3-133

M8254 Programmable Timer AllianceCORE Virtual IP Group 3-143

M8255 Programmable Peripheral Interface AllianceCORE Virtual IP Group 3-147

XF8255 Programmable Peripheral Interface AllianceCORE Memec Design Services 3-151

XF8256 Multifunction Microprocessor Support 
Controller

AllianceCORE Memec Design Services 3-155

M8259 Programmable Interrupt Controller AllianceCORE Virtual IP Group 3-159

XF8279 Programmable Keyboard Display In-
terface

AllianceCORE Memec Design Services 3-163

XF9128 Video Terminal Logic Controller AllianceCORE Memec Design Services 3-167

DRAM Controller AllianceCORE NMI Electronics 3-173

UARTs

Function CORE Solution Source Page

XF-8250 Asynchronous Communications Ele-
ment

AllianceCORE Memec Design Services 3-137

M16450 - Universal Asynchronous Receiver/
Transmitter

AllianceCORE Virtual IP Group 3-121

M16550A - UART With RAM AllianceCORE Virtual IP Group 3-125

Generic Development Tools

Function CORE Solution Source Page

GVA-100 DSP Prototyping Platform AllianceCORE GV & Associates 3-179

MDS FPGA Development Module AllianceCORE Memec Design Services 3-183

Microprocessor-Based Core Evaluation Card AllianceCORE NMI Electronics 3-185

Xilinx CORE Generator LogiCORE Xilinx 2-7
February 8, 1998  1-17



128

Appendix 5

Xilinx Core Data Sheets

1. 16 bit, 1024 Point FFT

2. Area Optimised Parallel Multiplier

3. Registered Adder



February 8, 1998 Product Specification – PRELIMINARY

FFT Core  (1024 Points)
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: dsp@xilinx.com
URL: www.xilinx.com

R

FFT technology developed by Rice Electronics.

Features
• 2's complement, fixed-point arithmetic
• Real-valued input data (15 bit)
• Complex output data (16 bit ~86 dB available output 

SNR)
• Transform size (N) = 1024
• No programming required
• No "twiddle factor" memory required (internal to Core)
• Process real-time sampling rates ~2Mhz
• Simplified interface (nominal support logic required)
• Synchronous design, optimized for XC4000E, EX, and 

XL families of FPGAs
• Drop-in modules for the XC4000E, EX, and XL families
• High performance and density guaranteed through 

Relational Placed Macro (RPM) mapping and 
placement technology

• Available in Xilinx CORE Generator

Applications
• Communications (high speed modems, transmulti-

plexers)
• Instrumentation (medical, scientific, test)
• Multi-media (signal compression/decompression)
• Military (radar, EW, ELINT, ESM)

General Description
The 1024-point Fast Fourier Transform (FFT) Core is a
functionally complete processor. The design requires a
1024-point external data memory and nominal interface
support. The Core targets the Xilinx XC4000E, EX, and XL
FPGA product series. 

The Core renders the following transform for a real-valued
input vector, f(n): 

for j=0 to (N/2-1)

where: 

F(j) = output (frequency domain) coefficients
f(n) = input (time domain) sequence
N = length of input sequence (transform size)

The Core accepts a real-valued input sequence f(n) and
produces a complex output sequence F(j). Due to the real-
valued nature of f(n), only the lower half of the set of F(j) is
generated. The upper half of the F(j) is the complex conju-
gate of the lower half, and therefore represents redundant
information.

General specifications of the FFT Core are listed in Table 1.

Functional Description
The 1024-point FFT Core is a functionally complete pro-
cessor requiring minimal external control. Only an External
Memory (1k word) is required for Core operation. The
External Memory holds the input vector f(n) to be trans-
formed.

The Core itself requires no initialization, and may be acti-
vated whenever valid data is present in External Memory.
When in operation, the Core must have exclusive access to
External Memory. The Core performs "read-only" accesses
to the Memory (no write operations).

F j( ) f n( )e
2– πi jn

N
-----------------

n 1=

N 1–

∑=

Table 1:  1024-Point FFT Parameters

Core Name
N = Size of 
Transform

P = Clock 
Periods 1 Clock Speed 2 Execution Time 3 Core Size 4

1024 FFT 1024 points 17408 532
1. P = number of clock periods for transform execution
2. Maximum clock speed based on XC4000E-3 series
3. Execution Time = P/(Clock Speed in Mhz)
4. Approximately 70% utilization of F/G function generators for XC4013 device
February 8, 1998  2-69



FFT Core (1024 Points)FFT Core (1024 Points)
The 1024-point FFT Core requires no external storage of
constants. "Twiddle-factors" are generated internally to the
Core and require no user programming. 

The Core possesses physically separate input and output
interfaces.

The input interface has separate data and address buses
for accessing External Memory. While External Memory
consists of 1024 words, only 9 address bits are required
from the Core. This is due to the simultaneous access of
two memory words on every read cycle, as explained
below.

The output interface presents output coefficients F(j) at a
constant rate. This interface provides physically separate
buses for output coefficients and index information. The
index identifies the specific output coefficient F(j). 

Pinout
DATA INPUT

The input interface includes dual 16-bit unidirectional data
buses to the Core (INHI[15:0], INLO[15:0]) and a 9-bit
address bus (ADR[8:0]) from the Core. These buses sup-
port read-only operations from External Memory during
FFT processing.

DATA OUTPUT

Output consists of the 16-bit unidirectional Output bus
(OUT[15:0]), the Index bus (INDEX[9:0]), and an output
Synchronization signal (SYNC). Output coefficients F(j) are
presented on the Output bus. The corresponding value of j
appears on the Index bus.

The Index bus identifies the component (imaginary or real)
and the coefficient number (j), associated with the data on
the Output bus.

TIMING INPUTS

Timing inputs consist of a START signal and a continuous
clock (FFTCK). A pre-defined number of clock pulses is
required for execution of the transform (see Table 1).

Figure 1 illustrates the 1024-point FFT Core interface sig-
nals. The format of the interface signals is summarized in
Table 2.

Figure 1: 1024-point FFT Core Interface 

Table 2: Core Signal Pinout  

Signal
Signal 

Direction
Description

START Input Logic level dictates opera-
tional state: 0=Reset State 
(Dormant), 1=Execution 
State

FFTCK Input Continuous clock (see Table 
1 for max.frequency)

INHI[14:0]
INLO[14:0]

Input One sign bit + 14 magnitude 
bits; 2's complement nota-
tion. Dual unidirectional input 
buses for f(n)

ADR[8:0] Input Unsigned 9-bit bus. Speci-
fies read address to External 
Memory

RDCK Output Continuous clock from Core. 
Synchronizes access to Ex-
ternal Memory. Derived from 
FFTCK (+2)

OUT[15:0] Output One sign bit + 15 magnitude 
bits; 2's complement nota-
tion. Unidirectional output 
bus for F(j)

SYNC Output Positive pulse indicates pres-
ence of new output compo-
nent (pulse width = one clock 
period)

INDEX[9:0] Output Unsigned 10-bit bus. Identi-
fies F(j) value on OUT bus. 
Index MSB indicates imagi-
nary or real component: 
0=Imaginary, 1=Real. 
Remainder of Index indi-
cates j

START

FFTCK

Start

Clock

 1024 point FFT
 CORE PROCESSOR

OUT[15:0]

SYNC

INDEX[9:0]

INHI[15:0]
INLO[15:0]

Input
Buses

Address
Bus

Read
Clock

f(n)        2x16

ADR[8:0] RDCK

Output
Bus

Output
Sync.

Index
Bus

X8222

F(j)

16

9

10
 2-70 February 8, 1998



Timing and Control 
When the START signal is low, the Core is "reset". This
prepares the Core for execution of a new transform.
START must go low for a minimum of one FFTCK period
for reset to occur.

While START is low, the Core interfaces are inactive. FFT
processing begins when START goes high. 

Input Interface

Input Interface Timing

The input interface requires exclusive (uninterrupted)
access to the External Memory during FFT processing.
This interface consists of an address bus, dual input data
buses, and a continuous clock (RDCK).

RDCK is produced by the Core and can be used to syn-
chronize External Memory to the Core. RDCK is derived
from the Core input clock (FFTCK) and is half the FFTCK
frequency.

The address bus from the Core changes on the rising edge
of RDCK. The data buses to the Core must be stable by the
next rising edge of RDCK. As seen in Figure 2, the time
allocated for memory access is one RDCK (2 FFTCKs).
This is equivalent to ~60ns at maximum clock speeds.

At the Core interface, the address and data buses termi-
nate (respectively) at the output and input of FD type regis-
ters (XC4000 library primitives). Consequently, the Core
contributes minimal logic delay in the memory access path.
Accordingly, most of the RDCK period is available for delay
through External Memory and associated I/O buffers.

FFTCK

RDCK

ADDRESS BUS

X8224

Address bus represents index on input sequence f(n). INLO and INHI (input data buses) must respond
with associated data samples within 1 RDCK period.

Continuous timing sequence is maintained for duration of FFT process.

Note: All signal transitions occur on rising clock edge.

(INLO)

(INHI)

~~ 60ns
n=1

~~ 60ns
n=2

set-up f(1)
to Core

set-up f(2)
to Core

set-up f(N/2+1)
to Core

set-up f(N/2+2)
to Core

Figure 2: Input Interface Timing
February 8, 1998  2-71



FFT Core (1024 Points)FFT Core (1024 Points)
External Memory Organization

The input buffer, f(n), must be accessible in two separate
halves from External Memory. The two halves must be
available simultaneously on the INLO and INHI data buses.
This imposes the following organizational requirements on
External Memory:

The lower half of f(n) must be available at the INLO bus
from the following External Memory address locations:

f(0)--->location 0
f(1)--->location 1
f(2)--->location 2

                                •
                                •
                                •

f(N/2 - 1)--->location (N/2 - 1)

The upper half of f(n) must be available at the INHI bus from
the following External Memory address locations:

f(N/2 + 0)--->location 0
f(N/2 + 1)--->location 1
f(N/2 + 2)--->location 2

                                •
                                •
                                •

f(N -1)--->location (N/2 - 1)

Note: the common 9-bit ADR bus is used to simultaneously
address both halves of External Memory. 

Ordering Information
This macro comes free with the Xilinx CORE Generator.
For additional information contact your local Xilinx sales
representative, or e-mail requests to dsp@xilinx.com.

For information on Rice Electronics, contact:

Rice Electronics
PO Box 741
Florissant, MO 63032
Phone: +1 314-838-2942
Fax: +1 314-838-2942
E-mail: ricedsp@aol.com
 2-72 February 8, 1998



Parallel Multipliers − Area Optimized

February 8, 1998 Product Specification
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: dsp@xilinx.com
URL: www.xilinx.com

R

Features
• Parallel Multipliers with parameterizable data widths
• Area optimized design
• Speed almost equal to our performance optimized 

version, but with fewer CLBs
• Independently adjustable input variable widths from 6 to 

32 bits
• Full precision outputs 
• Two’s complement and magnitude data formats
• Registered inputs and outputs
• Predictable timing and reduced routing times with pre-

designed drop-in modules
• Supports Foundation and Viewlogic as well as VHDL 

and Verilog design methodologies
• Drop-in modules for the XC4000E, EX, and XL families
• High performance and density guaranteed through 

Relational Placed Macro (RPM) mapping and 
placement technology

• Available in Xilinx CORE Generator

Functional Description
This parameterized module is a high-speed parallel imple-
mentation that multiplies an N-bit wide variable times an M-
bit variable and produces an N+M bit result. 

The CORE Generator accepts the parameters entered
through the dialog box and creates the specific design from
the values entered using a parameterized VHDL recipe.
VHDL instantiation code and a schematic symbol are cre-
ated along with the netlist for the design.

An area-efficient, high-speed algorithm is used to give an
efficient, tightly packed design. Each stage is pipelined for
maximum performance.

In addition to this area-efficient design, the CORE Genera-
tor contains a performance optimized design that yields a

10% to 20% increase in speed, but uses more CLB
resources.

Pinout
Signal names for the schematic symbol are shown in Fig-
ure 1 and described in Table 1. 

Figure 1: Core Schematic Symbol

Table 1: Core Signal Pinout 

CORE Generator Parameters
The CORE Generator dialog box for this macro is shown in
Figure 2. The parameters are as follows:

• Component Name : Enter a name for the component.
• Width A : Select an input bit width from the pull-down 

menu for the input A. The valid range is 6 to 32. 
• Width B:  Select an input bit width from the pull-down 

menu for the input B. The valid range is 6 to 32. 
• Signed or Unsigned:  Representation of the variables. 

Signal
Signal 

Direction
Description

A Input Parallel Data In, N-bits wide
B Input Parallel Data In, M-bits wide
C Input Clock, processes data on the 

low to high transition
PROD Output Parallel Data Out, N + M bits 

wide

PRODA

N bits wide

B
M bits wide

Variable
Multiply

N+M bits wide

C
Clock

X7999
February 8, 1998  2-121



Parallel Multipliers - Area OptimizedParallel Multipliers - Area Optimized
Figure 2: CORE Generator Dialog Box

Module Layout
Figure 3 shows the organization of CLBs in a 12x12 multi-
plier. This module fits in an array of 132 CLBs organized as
a matrix of 12 rows by 11 columns. The module uses 122
CLBs. The white squares represent the unused CLBs,
demonstrating the efficiency with which the matrix is uti-
lized. The unused CLBs are available for use in other parts
of the system design.

Data enters the module from the left side (A) and the bot-
tom left side (B). The resulting product is available on the
right side (O). If all 24 outputs are not connected to the next
stage of the design, the Xilinx implementation software
eliminates all unused CLBs.

Figure 3: CLB Organization for Module 

All of the area efficient series of modules can be built in a
rectangular format. For example, an 8-bit by 12-bit multi-
plier will fit in a rectangular matrix of 8 rows by 11 columns.

Figure 4 shows a 12x12 multiplier in place in an XC4005E
chip. The 4005E contains 196 CLBs, of which 122 are used
by the 12x12 multiplier and 74 are available for other func-
tions.

Figure 4: Xilinx Floorplanner View of XC4005E with a
12x12 multiplier 

The module contains both relative placement information
and timing constraints, allowing the Xilinx place and route
software to consistently produce the same timing specifica-
tions. CLB relative placement information (R-LOCs)
speeds up the routing place and route time by a factor of
10, thus permitting rapid design changes.

Multiplier Latency 
Data is buffered on the input and output of the multiplier
cores. The total latency (number of clocks required to get
the first output) is a function of the width of the B variable
only.

Table 2:  Multiplier Latency  

A11

A10

A 9

A8

A7

A6

A4

A3

A2

A5

A

A

1

O21

O19

O17

O15

O13

O11

O7

O5

O3

O9

O1

O22

O20

O18

O16

O14

O12

O8

O6

O4

O10

O2

O0
0

O23

B11 B7 B5 B3B9 B1
B8 B6 B4B10 B2 B0

M12x12a
12 rows by 11 columns

122 out of 132 CLBs used

X7990

B Data Width Latency (# Clocks)
6 to 8 bits 4

9 to 16 bits 5
17 to 31 bits 6
 2-122 February 8, 1998



Core Resource Utilization
Tables 3 to 8 show the number of CLBs required for some
of the available bit widths. The maximum speed is for
XC4000E-1 devices. 

All the variable multipliers are built to fit in a rectangular or
square matrix of N rows by M (or M-1) columns.

Table 3: Bit Width versus CLB Count for A = 8 bits 

Table 4: Bit Width versus CLB Count for A = 10 bits 

Table 5:  Bit Width versus CLB Count for A = 12 bits 

Table 6: Bit Width versus CLB Count for A = 16 bits 

Table 7: Bit Width versus CLB Count for A = 20 and 24
bits  

Table 8:  Bit Width versus CLB Count for Other Widths
of A 

A Bit 
Width

B Bit 
Width

CLB 
Count

4000E-1 
MHz

4000E-3 
MHz

8 6 44 86 54
8 8 54 83 53
8 10 86 86 53
8 12 96 78 46
8 14 111 77 45
8 16 124 74 44
8 20 180 71 43
8 24 211 68 41
8 32 282 60 35

A Bit 
Width

B Bit 
Width

CLB 
Count

4000E-1 
MHz

4000E-3 
MHz

10 6 53 81 51
10 8 65 77 49
10 10 100 78 47
10 12 113 77 47
10 14 133 70 42
10 16 146 72 44
10 20 209 65 39
10 24 238 62 38
10 32 330 57 34

A Bit 
Width

B Bit 
Width

CLB 
Count

4000E-1 
MHz

4000E-3 
MHz

12 6 61 75 47
12 8 75 72 46
12 10 116 70 42
12 12 130 67 41
12 14 153 65 40
12 16 167 65 39
12 20 238 63 38
12 24 274 59 36
12 32 371 51 31

A Bit 
Width

B Bit 
Width

CLB 
Count

4000E-1 
MHz

4000E-3 
MHz

16 6 79 64 41
16 8 98 63 39
16 10 148 61 37
16 12 165 59 36
16 14 192 56 35
16 16 213 58 35
16 20 299 56 34
16 24 349 51 33
16 32 473 49 31

A Bit 
Width

B Bit 
Width

CLB 
Count

4000E-1 
MHz

4000E-3 
MHz

20 6 98 56 36
20 8 120 55 35
20 12 202 55 34
20 16 259 50 31
20 20 358 50 30
24 6 116 50 32
24 8 142 50 32
24 12 238 46 28
24 16 305 45 28
24 20 425 45 28

A Bit 
Width

B Bit 
Width

CLB 
Count

4000E-1 
MHz

4000E-3 
MHz

6 6 37 96 60
9 9 94 81 49

11 11 121 74 45
13 13 161 61 38
14 14 173 62 37
15 15 203 58 36
17 17 293 55 33
18 18 308 53 32
19 19 343 52 32
32 6 151 41 27
32 8 187 41 27
32 12 309 41 26
February 8, 1998  2-123



Parallel Multipliers - Area OptimizedParallel Multipliers - Area Optimized
Multiplier Trade-offs
Two different implementations of parallel multipliers trade
area for speed. The area efficient designs consume about
one-fourth less CLB resources than the high speed designs
in the 4000E family. 

The additional routing resources in the 4000EX and
4000XL families will increase the performance for the area
efficient designs. In addition, both structures will benefit
from the overall performance increase derived from the
4000XL .35 micron process technology.

 

Figure 5: Trade-offs of Area Versus Speed Optimization
for Multipliers 

Ordering Information
This macro comes free with the Xilinx CORE Generator.
For additional information contact your local Xilinx sales
representative, or e-mail requests to dsp@xilinx.com.

Multipliers - MHz vs. CLBs
100

40

60

50

70

90

80

10

30

20

0
20050 1501000 250

8x8

12x12

16x16

M
H

z
40

00
E

-1

High Speed

Area Efficient

8x8

10x10

12x12

x7991
# CLBs
 2-124 February 8, 1998



Registered Adder

February 8, 1998 Product Specification
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: dsp@xilinx.com
URL: www.xilinx.com

R

Features
• Two data bus inputs: 2 to 32 bits wide
• Supports both 2’s complement signed and magnitude-

only unsigned data
• Drop-in modules for the XC4000E, EX, and XL families
• Registered output
• Clock Enable for output register
• Asynchronous Clear for output register
• Uses Fast Carry logic for high speed
• High performance and density guaranteed through 

Relational Placed Macro (RPM) mapping and 
placement technology

• Available in Xilinx CORE Generator

Functional Description
The Registered Adder module accepts two input buses, A
and B, adds them, and registers the sum, S. The input data
buses can be in either 2’s complement signed or magni-
tude-only unsigned numbers.

Pinout
Signal names for the schematic symbol are shown in Fig-
ure 1 and described in Table 1.

Figure 1: Core Schematic Symbol

Table 1: Core Signal Pinout

Signal 
Signal 

Direction
Description

A[N-1, 0] Input A data input – value is added 
to B data

B[N-1, 0] Input B data input – value is added 
to A data

CI Input CARRY IN – initial carry logic 
input. Set this to GND if not 
used

CE Input CLOCK ENABLE – active 
high signal used to enable 
the transfer of data from the 
internal registers to output

C Input CLOCK – clocks the output 
register

S[N, 0] Output SUM DATA OUTPUT – the 
registered output of the 
adder

A[31:0]

B[31:0]

CE

CI

C

CE
C 

D Q
S[32:0]

SE

+

+

X7544
February 8, 1998  2-107



Registered AdderRegistered Adder
CORE Generator Parameters
The CORE Generator dialog box for this macro is shown in
Figure 2. The parameters are as follows:

• Component Name : Enter a name for the output files 
generated for this module.

• Data Width : Select an input bit width from the pull-down 
menu. The valid range is 2-32. The same data width is 
applied to both the A and B inputs. The output size is 
automatically set to the input width plus one.

• Sign : Select Signed or Unsigned.

Figure 2: CORE Generator Dialog Box

Core Resource Utilization
Table 2 shows the number of CLBs required for each avail-
able bit width.

Ordering Information
This macro comes free with the Xilinx CORE Generator.
For additional information contact your local Xilinx sales
representative, or e-mail requests to dsp@xilinx.com.

Table 2: Bit Width versus CLB Count  

Bit Width CLB Count
2 2
3 2
4 3
5 3
6 4
7 4
8 5
9 5

10 6
11 6
12 7
13 7
14 8
15 8
16 9
17 9
18 10
19 10
20 11
21 11
22 12
23 12
24 13
25 13
26 14
27 14
28 15
29 15
30 16
31 16
32 17
 2-108 February 8, 1998



138

Appendix 6

Xilinx 1024 Point High Performance FFT Reference

Design Data Sheet (pp1-4)

(The full data sheet in PDF format is available on the enclosed CD)



April 8, 1999      Application Note

© 1999 Xilinx, Inc.  All rights reserved.  (Version 1.4) 1

High-Performance 1024-Point
Complex FFT

This document is (c) Xilinx, Inc. 1999.  No part of this file may be modified, transmitted to any third party (other than as
intended by Xilinx) or used without a Xilinx programmable or hardwire device without Xilinx's prior written permission.

Xilinx, Inc.
2100 Logic Drive
San Jose, CA  95124
Phone: +1 408-559-7778
FAX:    +1 408-559-7114
Email:  coregen@xilinx.com
URL: http://www.xilinx.com/ipcenter

Features
• High-performance 1024-point complex

FFT
• 16-bit complex input and output data
• 2’s complement arithmetic
• Integrated direct memory controller

(DMAC) to simplify host and memory
interfacing

• High performance and density
guaranteed through Relational Placed
Macro (RPM) mapping and placement
technology

1 Functional Description

The xFFT1024 fast Fourier transform (FFT) Core computes a 1024-point complex FFT. The input
data is a vector of 1024 complex values represented as 16-bit 2’s complement numbers – 16-bits
for each of the real and imaginary component of a datum.

2 Theory of Operation

The discrete Fourier transform (DFT) 1,,0),( −= NkkX Κ of a sequence 1,,0),( −= Nnnx Κ is
defined as

1,,0)()( /2
1

0

−== −
−

=
∑ NkenxkX Njnk
N

n

Κπ (1)

where N is the transform size and .1−=j  The fast Fourier transform (FFT) is a computationally
efficient algorithm for computing a DFT.

The Xilinx 1024-point transform engine employs a Cooley-Tukey radix-4 decimation-in-frequency
(DIF) FFT [1] to compute the DFT of a complex sequence. In general, this algorithm requires the
calculation of columns or ranks of radix-4 butterflies. These radix-4 butterflies are sometimes
referred to as dragonflies. Each processing rank consists of 4/N dragonflies. For 1024=N there
are 5 dragonfly ranks, with each rank comprising 256 dragonflies.

The FFT processor input-data for the Core is a vector of 1024 complex samples. The real and
imaginary components of each sample are represented as 16-bit 2’s complement numbers. The
data is stored externally to the FPGA. An additional bank of scratchpad RAM is also required.
The phase factors used in the FFT calculation are generated within the Core, so only the two



High-Performance 1024-point Complex FFT

© 1999 Xilinx, Inc.  All rights reserved.  (Version 1.4) 2

1024 × 32-bit banks of RAM discussed above are required to realize a complete transform
processor. Like the input-data, the phase factors are kept to a precision of 16 bits.

All of the control signals required to interface the FFT module to external memory are generated
by the Core. An integrated direct memory controller (DMAC) is also provided to allow the user to
easily download data vectors for processing, and to read-back the previous transform result.

Two modes of operation are supported – Continuous and One-shot. The continuous mode of
operation allows concurrent I/O and processing. As described above, 5 dragonfly ranks are
performed to compute a 1024-point transform. When the Continuous mode of operation is
selected, the host may download a new vector of data to the FFT engine while the 5th and final
rank is being computed. Concurrent with the data load operation, the result of the current FFT is
presented on the Core result databus. The FFT output samples are in digit reversed order, not bit
reversed order as is the case with many conventional Cooley-Tukey radix-2 FFT algorithms.

3 Finite Word Length Considerations

3.1 Scaling
The radix-4 FFT algorithm processes an array of data by successive passes over the array. On
each pass, the algorithm performs dragonflies, each dragonfly picking up four complex numbers
and returning four complex numbers to the same addresses but in a different memory bank. The
numbers returned to memory by the processor are larger than the numbers picked from memory.
A strategy must be employed to accommodate this dynamic range expansion. A full explanation
of scaling strategies and their implications is beyond the scope of this document, the reader is
referred to several papers available in the open literature [2] [3] that discuss this topic.

The Xilinx 1024-point FFT Core scales dragonfly results by a factor of 4 on each processing pass.
The scaling results in the final output sequence being modified by the factor .1024/1 Formally, the

output sequence 1,,0),(' −= NkkX Κ computed by the Core is defined in Eq. (2)

1,,0)(
1

)(
1024

1
)( /2

1

0

' −=== −
−

=
∑ Nkenx

N
kXkX Njnk

N

n

Κπ (2)



High-Performance 1024-point Complex FFT

© 1999 Xilinx, Inc.  All rights reserved.  (Version 1.4) 3

4 Pinout

The schematic symbol is shown in Figure 1.

Table 1 defines the module pin functionality.

5 Applications Information

Figure 2 shows the recommended method for interfacing the FFT Core to external memory. The
data buses DOA_[R|I], DOB_[R|I], DIA_[R|I], DIB_[R|I], RAMA_A and RAMB_A must be
registered in the FPGA IOBs. Figure 3 shows how to register the memory data bus in the FPGA
IOBs using OFDEX16 and IFDX16 library components. Figure 4 illustrates the use of OFDX
elements to register the address bus.

D0A_R[15:0]

DIA_R[15:0]

DOA_I[15:0]

DIA_I[15:0]

RAMA_A[9:0]

RAMA_WR

RAMA_OE

RAMA_CS

XK_R[15:0]

XK_I[15:0]

K[9:0]

DONE

RESULT

HOST_DI[15:0]
RS

AUTO

DMA

START

CE

CLK

DOB_R[15:0]

DIB_R[15:0]

DOB_I[15:0]

DIB_I[15:0]

RAMB_A[9:0]

RAMB_WR

RAMB_OE

RAMB_CS

OBUF_TA

OBUF_TB

DMA_CYCLE

16

16

16
16

10

HOST_DR[15:0]

16

16

10

16

16

16

16

10

MEM

IO_CYCLE

Figure 1: 1024-point FFT symbol.



High-Performance 1024-point Complex FFT

© 1999 Xilinx, Inc.  All rights reserved.  (Version 1.4) 4

Signal Direction Description Signal Direction Description
RS Input Master reset – active high RAMA_OE Output RAM A output

enable – active
low

START Input Initiate FFT execution –
active high

RAMB_OE Output RAM B output
enable – active
low

AUTO Input Defines One-shot or
Continuous mode

RAMA_CS Output RAM A chip
select – active
low

DMA Input Direct memory access
request – active high

RAMB_CS Output RAM B chip
select – active
low

CE Input Clock enable – active high RAMA_WR Output RAM A write
strobe – active
rising-edge

CLK Input Master clock input – active
positive edge

RAMB_WR Output RAM B write
strobe – active
rising-edge

HOST_DR Input Host databus – real OBUF_TA Output Tri-state control
for IOB FFs

HOST_DI Input Host databus – imag. OBUF_TB Output Tri-state control
for IOB FFs

DOA_R I/O RAM block A databus -
real

RESULT Output FFT result strobe
– active high

DOA_I I/O RAM block A databus –
imag.

XK_R Output FFT result bus -
real

DOB_R I/O RAM block B databus -
real

XK_I Output FFT result bus –
imag.

DOB_I I/O RAM block B databus –
imag.

K Output FFT result index
bus

RAMA_A Output RAM A address bus DONE Output FFT complete
strobe – active
high1

RAMB_A Output RAM B address bus DAM_CYCLE Output Host DMA in
progress strobe –
active high

MEM Input Defines single or dual
address-space operation

IO_CYCLE Output Precedes
activation of
STROBE by 4
clock cycles and
indicates a
pending I/O
operation2

NOTES:
1. DONE is active for one clock period.
2. IO_CYCLE is active for one clock period.

Table 1: 1024-point FFT pin definitions.



143

Appendix 7

Response from Dr. Chris Dick, Author of the Xilinx FFT

Reference Design, Concerning Incorrect FFT Transform

Results

From: Chris Dick <Chris.Dick@xilinx.com>
To: Andrew Wilkinson <awilkinson@totalise.co.uk>
Subject: Re: 1024 pint FFT Reference Design - Naming Contradiction ?
Date: 05 August 1999 19:25

Before you invest too much more time in the XC4000 FFT design, I want to make you
aware that there is a 1024-point FFT for Virtex. This has not been released as yet, it
is still in alpha testing. This FFT has a behv model and can easily and quickly be
simlulated in a tool like Modelsim. The behv is available now, and in several weeks an
edif netlist will be available.

When I simulated the XC4000 FFT I was in a Viewlogic environment. There are memory
modules available in viewsim that permit the simulation of a complete transform.

Another approach I used was as follows: I have a C model of the FFT. You run your
input data through this model and capture all the intermediate results from the
butterflies to a file. You use this file as input to the simulator. You capture all
the outputs from the simulation, and offline verify that the core produces all of the
correct results. Now this is not as clean as inserting memory in the design, but I
have had problems doing gate level simulations of the design that include two 1024x32
banks of memory.

I am not aware of an easy way to simulate the required storage in the Foundation
simulator in a simple manner. I did try this at one point by building memories
produced by the core generator. I recall that I had to construct a memory of the
required size using several smaller memories. I did not have much sucess with this
approach.

The underlying problem is that there is no behv. model for the XC4000 FFT and you are
forced to do a gate level sim. This is of course not the case with the Virtex FFTs

Chris

--
Dr Chris Dick
Senior Systems Engineer
Xilinx Inc
2100 Logic Drive
San Jose
CA 95124


	Appendix4.PDF
	core_sol.pdf
	Table of Contents
	Introduction Table of Contents
	Introduction

	CORE Solutions Overview
	The Effect of PLD Architecture on Cores
	XC4000-Series FPGAs: The Best Choice for Deliverin...
	Product Listing by Application Segment

	LogiCORE Products Table of Contents
	LogiCORE Products
	Product Overview
	Xilinx CORE Generator
	Peripheral Component Interconnect Bus Table of Con...
	PCI Master & Slave Interfaces Version 2.0
	PCI Master & Slave Interfaces Version 1.2.0
	PCI32 Spartan Master & Slave Interfaces
	Synthesizable PCI Bridge Design Example

	Digital Signal Processing Table of Contents
	Correlators
	One Dimensional ROM-Based Correlator
	One Dimensional RAM-Based Correlator

	Filters
	Comb Filter
	Serial Distributed Arithmetic FIR Filter
	Dual-Channel Serial Distributed Arithmetic FIR Fil...
	Parallel Distributed Arithmetic FIR Filter

	Transforms
	DFT Cores (Real Data In, Complex Data Out)
	FFT Core (1024 Points)

	DSP Building Blocks
	SDA FIR Control Logic
	Sine/Cosine
	Non-Symmetric, 16-Deep Time Skew Buffer
	Non-Symmetric, 32-Deep Time Skew Buffer
	Symmetric, 16-Deep Time Skew Buffer


	Base-Level Functions Table of Contents
	Basic Elements
	Constant
	Two Input MUX
	Three Input MUX
	Four Input MUX
	Parallel to Serial Converter
	Register

	Math Funtions
	1’s and 2’s Complement
	Scaled By 1/2 Accumulator
	Registered Adder
	Registered Loadable Adder
	Registered Scaled Adder
	Registered Serial Adder
	Integrator
	Constant Coefficient Multiplier
	Constant Coefficient Multiplier (Pipelined)
	Parallel Multipliers - Area Optimized
	Parallel Multipliers - Performance Optimized
	Square Root
	Registered Subtracter
	Registered Loadable Subtracter

	Memories
	Delay Element
	Synchronous FIFO
	16-Word Deep Registered Look-Up Table
	32-Word Deep Registered Look-Up Table
	Registered Synchronous RAM
	Registered ROM



	AllianceCORE Products Table of Contents
	AllianceCORE Products
	AllianceCORE Program Overview
	Standard Bus Interface Products Table of Contents
	XF-TWSI Two-Wire Serial Interface
	PCMCIA Fax/Modem Macro
	PCMCIA Library R1.2
	PCMCIA Prototyping Card
	PCMCIA Card Debugger/Exerciser
	PCMCIA CIS Generator 1.2
	Low-Speed USB Function Controller
	Full-Speed USB Function Controller
	3-Port USB Hub Controller
	USB Function Evaluation Board
	USB Hub Evaluation Board
	USB Simulation Model

	Communications and Networking Products Table of Co...
	Cell Assembler (CC-201)
	Cell Delineation (CC-200)
	CRC10 Generator and Verifier (CC-130)
	CRC32 Generator and Verifier (CC-131)
	HDLC Protocol Core
	Reed-Solomon Decoder
	Reed-Solomon Encoder
	MT1F T1 Framer
	UTOPIA Slave (CC-141)
	Viterbi Decoder

	Processor Products Table of Contents
	TX400 Series RISC CPU Cores
	RISC CPU Core Design Base Board
	Scalable Development Platform Integrated Software
	V8-uRISC 8-bit RISC Microprocessor
	IntelliCore Prototyping System

	Processor Peripherals Table of Contents
	M16450 Universal Asynchronous Receiver/Transmitter...
	M16550A - Universal Asynchronous Receiver/Transmit...
	C2910A Microprogram Controller
	M8237 DMA Controller
	XF8250 Asynchronous Communications Core
	M8254 Programmable Timer
	M8255 Programmable Peripheral Interface
	XF8255 Programmable Peripheral Interface
	XF8256 Multifunction Microprocessor Support Contro...
	M8259 Programmable Interrupt Controller
	XF8279 Programmable Keyboard Display Interface
	XF9128 Video Terminal Logic Controller
	DRAM Controller

	General Core Development Tools Table of Contents
	GVA-100 DSP Prototyping Platform
	MDS FPGA Development Module
	Microprocessor Based Core Evaluation Card

	AllianceCORE Partner Profiles Table of Contents
	Partner Profiles Overview
	CAST, Inc.
	Comit Systems, Inc.
	CoreEl MicroSystems
	DeDris Embedded Algorithms BV
	Digital Objects, Corporation
	Eureka Technology, Inc.
	GV & Associates, Inc.
	Innovative Semiconductors, Inc.
	Integrated Silicon Systems, Ltd.
	Logic Innovations, Inc.
	Memec Design Services
	Mentor Graphics Corporation
	Mobile Media Research, Inc.
	NMI Electronics Ltd.
	Perigee, LLC
	Phoenix Technologies/Virtual Chips
	Rice Electronics
	Sand Microelectronics
	SICAN Microelectronics Corp.
	T7L Technology, Inc.
	Technology Rendezvous Inc.
	VAutomation
	Virtual IP Group, Inc.


	LogiBLOX
	LogiBLOX Table of Contents
	LogiBLOX

	Reference Designs
	Reference Designs Table of Contents
	Reference Designs



	Appendix5.PDF
	core_sol.pdf
	Table of Contents
	Introduction Table of Contents
	Introduction

	CORE Solutions Overview
	The Effect of PLD Architecture on Cores
	XC4000-Series FPGAs: The Best Choice for Deliverin...
	Product Listing by Application Segment

	LogiCORE Products Table of Contents
	LogiCORE Products
	Product Overview
	Xilinx CORE Generator
	Peripheral Component Interconnect Bus Table of Con...
	PCI Master & Slave Interfaces Version 2.0
	PCI Master & Slave Interfaces Version 1.2.0
	PCI32 Spartan Master & Slave Interfaces
	Synthesizable PCI Bridge Design Example

	Digital Signal Processing Table of Contents
	Correlators
	One Dimensional ROM-Based Correlator
	One Dimensional RAM-Based Correlator

	Filters
	Comb Filter
	Serial Distributed Arithmetic FIR Filter
	Dual-Channel Serial Distributed Arithmetic FIR Fil...
	Parallel Distributed Arithmetic FIR Filter

	Transforms
	DFT Cores (Real Data In, Complex Data Out)
	FFT Core (1024 Points)

	DSP Building Blocks
	SDA FIR Control Logic
	Sine/Cosine
	Non-Symmetric, 16-Deep Time Skew Buffer
	Non-Symmetric, 32-Deep Time Skew Buffer
	Symmetric, 16-Deep Time Skew Buffer


	Base-Level Functions Table of Contents
	Basic Elements
	Constant
	Two Input MUX
	Three Input MUX
	Four Input MUX
	Parallel to Serial Converter
	Register

	Math Funtions
	1’s and 2’s Complement
	Scaled By 1/2 Accumulator
	Registered Adder
	Registered Loadable Adder
	Registered Scaled Adder
	Registered Serial Adder
	Integrator
	Constant Coefficient Multiplier
	Constant Coefficient Multiplier (Pipelined)
	Parallel Multipliers - Area Optimized
	Parallel Multipliers - Performance Optimized
	Square Root
	Registered Subtracter
	Registered Loadable Subtracter

	Memories
	Delay Element
	Synchronous FIFO
	16-Word Deep Registered Look-Up Table
	32-Word Deep Registered Look-Up Table
	Registered Synchronous RAM
	Registered ROM



	AllianceCORE Products Table of Contents
	AllianceCORE Products
	AllianceCORE Program Overview
	Standard Bus Interface Products Table of Contents
	XF-TWSI Two-Wire Serial Interface
	PCMCIA Fax/Modem Macro
	PCMCIA Library R1.2
	PCMCIA Prototyping Card
	PCMCIA Card Debugger/Exerciser
	PCMCIA CIS Generator 1.2
	Low-Speed USB Function Controller
	Full-Speed USB Function Controller
	3-Port USB Hub Controller
	USB Function Evaluation Board
	USB Hub Evaluation Board
	USB Simulation Model

	Communications and Networking Products Table of Co...
	Cell Assembler (CC-201)
	Cell Delineation (CC-200)
	CRC10 Generator and Verifier (CC-130)
	CRC32 Generator and Verifier (CC-131)
	HDLC Protocol Core
	Reed-Solomon Decoder
	Reed-Solomon Encoder
	MT1F T1 Framer
	UTOPIA Slave (CC-141)
	Viterbi Decoder

	Processor Products Table of Contents
	TX400 Series RISC CPU Cores
	RISC CPU Core Design Base Board
	Scalable Development Platform Integrated Software
	V8-uRISC 8-bit RISC Microprocessor
	IntelliCore Prototyping System

	Processor Peripherals Table of Contents
	M16450 Universal Asynchronous Receiver/Transmitter...
	M16550A - Universal Asynchronous Receiver/Transmit...
	C2910A Microprogram Controller
	M8237 DMA Controller
	XF8250 Asynchronous Communications Core
	M8254 Programmable Timer
	M8255 Programmable Peripheral Interface
	XF8255 Programmable Peripheral Interface
	XF8256 Multifunction Microprocessor Support Contro...
	M8259 Programmable Interrupt Controller
	XF8279 Programmable Keyboard Display Interface
	XF9128 Video Terminal Logic Controller
	DRAM Controller

	General Core Development Tools Table of Contents
	GVA-100 DSP Prototyping Platform
	MDS FPGA Development Module
	Microprocessor Based Core Evaluation Card

	AllianceCORE Partner Profiles Table of Contents
	Partner Profiles Overview
	CAST, Inc.
	Comit Systems, Inc.
	CoreEl MicroSystems
	DeDris Embedded Algorithms BV
	Digital Objects, Corporation
	Eureka Technology, Inc.
	GV & Associates, Inc.
	Innovative Semiconductors, Inc.
	Integrated Silicon Systems, Ltd.
	Logic Innovations, Inc.
	Memec Design Services
	Mentor Graphics Corporation
	Mobile Media Research, Inc.
	NMI Electronics Ltd.
	Perigee, LLC
	Phoenix Technologies/Virtual Chips
	Rice Electronics
	Sand Microelectronics
	SICAN Microelectronics Corp.
	T7L Technology, Inc.
	Technology Rendezvous Inc.
	VAutomation
	Virtual IP Group, Inc.


	LogiBLOX
	LogiBLOX Table of Contents
	LogiBLOX

	Reference Designs
	Reference Designs Table of Contents
	Reference Designs


	core_sol.pdf
	Table of Contents
	Introduction Table of Contents
	Introduction

	CORE Solutions Overview
	The Effect of PLD Architecture on Cores
	XC4000-Series FPGAs: The Best Choice for Deliverin...
	Product Listing by Application Segment

	LogiCORE Products Table of Contents
	LogiCORE Products
	Product Overview
	Xilinx CORE Generator
	Peripheral Component Interconnect Bus Table of Con...
	PCI Master & Slave Interfaces Version 2.0
	PCI Master & Slave Interfaces Version 1.2.0
	PCI32 Spartan Master & Slave Interfaces
	Synthesizable PCI Bridge Design Example

	Digital Signal Processing Table of Contents
	Correlators
	One Dimensional ROM-Based Correlator
	One Dimensional RAM-Based Correlator

	Filters
	Comb Filter
	Serial Distributed Arithmetic FIR Filter
	Dual-Channel Serial Distributed Arithmetic FIR Fil...
	Parallel Distributed Arithmetic FIR Filter

	Transforms
	DFT Cores (Real Data In, Complex Data Out)
	FFT Core (1024 Points)

	DSP Building Blocks
	SDA FIR Control Logic
	Sine/Cosine
	Non-Symmetric, 16-Deep Time Skew Buffer
	Non-Symmetric, 32-Deep Time Skew Buffer
	Symmetric, 16-Deep Time Skew Buffer


	Base-Level Functions Table of Contents
	Basic Elements
	Constant
	Two Input MUX
	Three Input MUX
	Four Input MUX
	Parallel to Serial Converter
	Register

	Math Funtions
	1’s and 2’s Complement
	Scaled By 1/2 Accumulator
	Registered Adder
	Registered Loadable Adder
	Registered Scaled Adder
	Registered Serial Adder
	Integrator
	Constant Coefficient Multiplier
	Constant Coefficient Multiplier (Pipelined)
	Parallel Multipliers - Area Optimized
	Parallel Multipliers - Performance Optimized
	Square Root
	Registered Subtracter
	Registered Loadable Subtracter

	Memories
	Delay Element
	Synchronous FIFO
	16-Word Deep Registered Look-Up Table
	32-Word Deep Registered Look-Up Table
	Registered Synchronous RAM
	Registered ROM



	AllianceCORE Products Table of Contents
	AllianceCORE Products
	AllianceCORE Program Overview
	Standard Bus Interface Products Table of Contents
	XF-TWSI Two-Wire Serial Interface
	PCMCIA Fax/Modem Macro
	PCMCIA Library R1.2
	PCMCIA Prototyping Card
	PCMCIA Card Debugger/Exerciser
	PCMCIA CIS Generator 1.2
	Low-Speed USB Function Controller
	Full-Speed USB Function Controller
	3-Port USB Hub Controller
	USB Function Evaluation Board
	USB Hub Evaluation Board
	USB Simulation Model

	Communications and Networking Products Table of Co...
	Cell Assembler (CC-201)
	Cell Delineation (CC-200)
	CRC10 Generator and Verifier (CC-130)
	CRC32 Generator and Verifier (CC-131)
	HDLC Protocol Core
	Reed-Solomon Decoder
	Reed-Solomon Encoder
	MT1F T1 Framer
	UTOPIA Slave (CC-141)
	Viterbi Decoder

	Processor Products Table of Contents
	TX400 Series RISC CPU Cores
	RISC CPU Core Design Base Board
	Scalable Development Platform Integrated Software
	V8-uRISC 8-bit RISC Microprocessor
	IntelliCore Prototyping System

	Processor Peripherals Table of Contents
	M16450 Universal Asynchronous Receiver/Transmitter...
	M16550A - Universal Asynchronous Receiver/Transmit...
	C2910A Microprogram Controller
	M8237 DMA Controller
	XF8250 Asynchronous Communications Core
	M8254 Programmable Timer
	M8255 Programmable Peripheral Interface
	XF8255 Programmable Peripheral Interface
	XF8256 Multifunction Microprocessor Support Contro...
	M8259 Programmable Interrupt Controller
	XF8279 Programmable Keyboard Display Interface
	XF9128 Video Terminal Logic Controller
	DRAM Controller

	General Core Development Tools Table of Contents
	GVA-100 DSP Prototyping Platform
	MDS FPGA Development Module
	Microprocessor Based Core Evaluation Card

	AllianceCORE Partner Profiles Table of Contents
	Partner Profiles Overview
	CAST, Inc.
	Comit Systems, Inc.
	CoreEl MicroSystems
	DeDris Embedded Algorithms BV
	Digital Objects, Corporation
	Eureka Technology, Inc.
	GV & Associates, Inc.
	Innovative Semiconductors, Inc.
	Integrated Silicon Systems, Ltd.
	Logic Innovations, Inc.
	Memec Design Services
	Mentor Graphics Corporation
	Mobile Media Research, Inc.
	NMI Electronics Ltd.
	Perigee, LLC
	Phoenix Technologies/Virtual Chips
	Rice Electronics
	Sand Microelectronics
	SICAN Microelectronics Corp.
	T7L Technology, Inc.
	Technology Rendezvous Inc.
	VAutomation
	Virtual IP Group, Inc.


	LogiBLOX
	LogiBLOX Table of Contents
	LogiBLOX

	Reference Designs
	Reference Designs Table of Contents
	Reference Designs




