XMLGet -- User Documentation

by Neil Ferguson (neilferguson@mail.com)

Contents

1. User Documentation

1.1 Starting the Query Engine
1.2 Query Engine Commands
1.3 Basc Syntax Tutorid

1.4 Advanced Syntax Tutoria
1.5 Forma Query Grammar

1. User Documentation

1.1 Starting the Query Engine

Note : XML Get requires a Java Runtime Environment (version 1.2 or higher) to be
ingtaled.

1. Thefile“xmlget.ja” should be added to the classpath environment varigble:
Under MSWindows:

At the command prompt type:

set cl asspat h=%l asspath%c:\xmnl get.jar
Assauming thet the xmiget.jar fileishdd inc) .
Under Unix:

CLASSPATH=/ xm get . j ar
export CLASSPATH

Asauming that the 'xmiget,jar' fileis held in the root directory of the files system.

2. The appropriate query engine should be started. There are two different engines and
you should choose the mogt suitable one for your needs.

Standalone Query Engine:

This engine does not provide any support for a client/server gpproach. All commands are
read from standard input and dl output is displayed on standard output. Thisis most

suitable for when only one user on aloca machine needs to have access to the query

engine. To dart it type:

java xml get. server. St andal oneQuery

Network Query Engine

This engine enables clients operating on remote machines to open dedicated connections
to the machine on which the query engine (the server) is running. This suitable for when
queries need to be executed remotely using Java-based dients, and high performanceis
required. This engine takes one command-line argument (the port number thet it should
be started on) and can be executed as follows:

java xml get.server. Net workQuery <port nunber>

The port number can generaly be anything between 1029 and 9999, provided it is not
dready in use.

If alarge number of documents are to be held in the system at one time you may wish to
et theinitid amount of memory that the Javavirtud machine has, and the maximum
amount that it can have. These can be set by starting Javawith the -Xms and '-Xmx'

options.

1.2 Query Engine Commands

When the query engine is started the following message will appear:

Query engi ne ready. Please enter a command...

The query engine is now ready to accept commands, ether via. anetwork if using
NetworkQuery, or in to the standard input of the computer thet is running
Standal oneQuery. Two commands are available: ‘documents and ‘query’. The

‘documents’ command specifies the documents that are to be parsed and added to the
system, and tekes alist of document URI’ s asits parameter. Once the ‘ documents
command has been executed, and the specified documents have been parsed, the ‘ query’
command can be executed. The ‘query’ command takes an XML Get query asits
parameter and executes this query on the documentsin the system. For example, to parse
the documents * ./test.xml’ and * http://mww.mi5.gov.uk/topsecret/doubleagentsxml’, and
then execute the query ‘//name on them type:

docunent s=test.xm http://ww. m 5. gov. uk/topsecret/doubl eagents. xni

query=// nane

If an error is not generated, the results would be returned (either over the network, or to
gandard output) in the following XML format:

<?xm version=\"1.0\" encodi ng=\"UTF-8\""?>

<results document="./test.xm">

results...

</results>

<results docunent="http://ww. m 5. gov. uk/topsecret/doubl eagents. xm "
results...

</results>

1.3 Basic Syntax Tutorial

The basic query syntax isamost identicd to the core part of the ‘XML Query Language
(XQL), as described in the XQL FAQ. Much of it isdso smilar to the XML Path
Language (Xpath). It is recommended, however, that you read this section even if you are
familiar with these technologies, asit clarifies someissuesraised by the XQL

specification and introduces concepts which will be helpful in understanding later

sections.

Familiarity with XML is assumed; it may be helpful to imagine an XML document asa
tree-type structure with each dement being anode in the tree. All of the examplesin this
section refer to the test XML document given in gppendix A.

1.3.1 Simple Path Queries

XMLGet queries are sructuraly smilar to the Unix or MS Dos directory navigation
syntax, except ingtead of each part of the path representing afile in the file-sysem it
represents an ement in an XML document tree. For example, the following Unix path
sructure represents the ‘email .txt' file within the 'name directory:

nane/ emai | . t xt

Smilarly, the following XMLGet query represents dl ‘email’ eements within the ‘name
eement:

nanme/ emai |
The Path Operator

The path operator */ is used to indicate one type of eement as a child eement of another
one. It can be thought of as giving ‘context’ to groups of eements; for example, ‘X’
eementswithin ‘y" dementswill be contextualy different to ‘X’ dementswithin‘Z
elements.

Example -- Tofind al *customer’ eementsthat are child dements of ‘ custorders
eements

cust order s/ cust oner

The above query, when used on its own, would return the tag-names, attribute values, and
textua content of al ‘customer’ eements that are child dements of *custorders

elements. It could aso be used to specify the ‘ current context’” when used within amore
complex query. The concept of ‘current context’ will become clearer when we look at
Filters and Subscriptsin later sections.

The path operator can also be used at the art of path structures to indicate that the query
should search from the root dement of the document instead of the current context.

Example -- Tofind dl *customer” dementswithin ‘ custorders eements Sarting at the

root of the document;

/ cust or der s/ cust oner

The Recursive Descent Operator

The recursive descent operator *//’ is used to indicate one type of eement at any leve
within another type. Whereas the norma path operator */* only refers to those eements
that are directly below another element in the XML document tree (its "children”), the

recursive descent operator refers to eements anywhere below it (its "ancestors').

Example -- Tofind ‘fore dements anywhere within ‘cusomer’ dements, within
‘custorders dements:

custorders/custoner//fore

For the example data given in gppendix A. the above query would be the equivaent to:

cust orders/ cust oner/ nane/ fore
The Dot Slash Operator

The dot dash operator * ./’ is used to specify that the query should execute from the
current context rather than the root of the document. Since thisis assumed anyway, this
operator is only needed under one condition: where a recursive descent operator is used at

the sart of the query, and it should execute from the current context rather than the root.

Example -- Tofind dl ‘name dements within the current context:

./ name

Thisisequivaent to:

namne

Example -- Tofind dl ‘fore dementsat any level, garting a the current context:

.//fore

Thisis different from the following, which finds al ‘fore dements anywhere within the

document:

/lfore
The Wildcard Operator

The Wildcard Operator “*’ is used to specify ‘any’ eement, rather than particular named

ones.

Example -- Tofind dl the child dements of ‘cusomer’ dements

customer/*

Example -- Tofind dl the dementsin adocument:

I1*

XMLGet differs from other implementations of XQL, such asthe‘GMD IPSI XQL
Enging, in that it returns only the tag-names, attributes, and textua content of the
elements specified by queries, rather than their descendant €l ements aswell; this can
provide sgnificant performance improvements, especidly with ‘degp’, complex
documents. The user can, however, specify that they want descendant elementsto be
returned by putting ‘//** at the end of queries.

Example -- Tofind dl *customer’ dements and their descendants:

custorders/custoner//*

1.3.2 Queries with Filters

Filters can be used to gpply condraints to the eements within the query, and are
andogousto the SQL ‘WHERE' clause. Each filter must evauate to a Boolean (true or
false), and is tested for each element in the group to which it gpplies.

Filters with Comparisons

Perhaps the most useful part of afilter is that which enables one value to be compared
with another one within the document. The textud vaue of both eements and attributes
can be compared; if an element is being compared, sections of textua content that are
separated by other dements, processing ingtructions etc. in the source document, will be
separated by a white-space character * * for comparison purposes.

Simple Element Comparisons

The smplest comparison operator isthe ‘equals sign ‘=". Thisis used to test whether the
vaue on the l&ft (the left operand) is equd to the vaue on the right (the right operand).
Boolean ‘tru€’ isreturned if so.

Example -- Tofind dl ‘name dements where the textuad content of the ‘fore’ child
element isequa to ‘Bob'’:

custorders/custoner/nane[fore = ‘ Bob’]

Theleft-hand operand in the comparison should be a sub-query. This query mus,
however, sart from the current context and not from the root of the document (i.e. it must
bea‘reative query rather than an *absolute’ query); thisis because it would be pointless
to have filters where the item being compared was not within the dement that the filter
applied to.

The right-hand operand can be dither a textua value enclosed in quotes' (asin the above
example), or asub-query. In this case queries do not have to start from the current context
(i.e. they can be ‘rdative’ or ‘absolute’).

Example -- Tofind dl ‘customer’ eements where any of the ‘fore eementswithin
‘name dements are equd to the ‘fax’ eement within the ‘cusomer’ eement:

custorders/custoner[nane/ fore = /custorders/custoner/fax]

Theleft-hand operand can have multiple vaues (i.e. it can be a“vector”), and in the
above example each ‘name dement could have multiple ‘fore eements. The right-hand
operand should only have asingle vaue (i.e. it should be a“scda’), and in the above
example there should only be one ‘ customer’ element containing a‘fax’ demert, and
only one fax eement should be contained within it. If eements do contain multiple
instances of another dement, it is possible to specify which ones are used in the
comparison through the use of * Subscripts .

Comparisons with Attributes

Theleft and right operands can aso represent attribute va ues through the use of the * @’
symbol followed by the name of the attribute.

Example -- Tofind dl of the ‘cusomer’ dementswherethe ‘id’ atribute equasthe
vaue‘101'.

custorders/custoner[@d = ‘101"]

Attributes can also be used at the end of path structures. They cannot, however, be used
within path structures, as XML attributes cannot have child dements.

Example -- To find dl of the ‘custorders eements with ‘cusomer’ child eements
whose ‘id’ attribute isequa to * 775':

custorders[customer/ @d = ‘775"]

The wildcard symbol “** can aso be used to represent any of the attributes of agiven
element.

Example -- To find dl of the ‘name dements with attribute values equd to ‘232':

custorders/custonmer/name[@ = ‘232’]
Multiplicity

If the |eft-hand operand in a comparison is expected to have multiple vaues, it is possble
to specify whether dl of them, or just any of them, must match the conditions of the
comparison for the result to be true. Thisis achieved through the use of the ‘adl and
‘any prefixes. If no prefix isgiven, ‘any’ is assumed.

Example -- To find dl the ‘cusomer’ eementswhere dl of the ‘order’ child eements

are equal to ‘Lawnmower’.

custorders/custoner/[all order = ‘| awnnower’]

Example -- Tofind dl the ‘cusomer’” elements where any of the ‘order’ child dements

are equa to ‘Lawvnmower’.

cust order s/ customer/ [any order = ‘| awnnmower’]

Sincethe ‘any prefix is assumed, the above example is equivaent to:

custorders/custoner/[order = ‘Il awnnmwer’]

! Unlike XQL, the right-hand operand cannot be a numerical value without quotes. To compare nunerical
values use the numerical comparison operators detailed in section 1.4.1.

Basic Comparison Operators

XMLGet provides arange of basic operators for use in comparisons. These are as

follows

a=b
al=b
a<b
a>b
a<=b
a>=bhb
a$iegdb
a$inesb
asiltsb
asig$b
adilesb
a$igebb

Returnstrueif aislexicaly equa to b?
Returnstrueif aislexicdly not equd to b
Returnstrueif aislexicdly lessthan b

Returnstrueif aislexicaly greater than b
Returnstrueif aislexicdly lessthan or equd to b
Returnstrueif aislexicaly grester than or equa to b
Case insengtive verson of ‘=’
Caseinsengtive verson of ‘1=
Case insengtive verson of ‘<’
Case insengtive verson of *>'
Case insengtive verson of ‘<=’

Caseinsengtive verson of ‘>='

There are a'so anumber of other comparison operators that can be used for making

numerical (as opposed to lexica) comparisons, and for comparing sections of strings. For
further details see section 1.4.1

Filters without Comparisons

If an element or attribute is used on its own in afilter, without a corresponding

comparison operand or right-hand operator, the result is‘true’ if that particular dement or
attribute actudly exigts. This can be thought of as a‘there-exists-a method, and anything

that isvdid for aleft-hand operand is vdid here.

Example -- Tofind dl ‘name dementsthat have ‘fax’ child dements

cust order s/ cust oner/ nane[f ax]

Example -- Tofind dl ‘customer’ dements that have ‘order’ child dementswith ‘id
attributes.

cust orders/customer[order/ @ode]
Boolean Expressions

XML Get provides support for a boolean expressons within filters.

AND Expression

The ‘AND’ boolean expression is represented in XML Get queries by ‘and . In the
expresson ‘aand b’, whereaand b are either comparisons or ‘there-exists-a methods,
, the expression will evauateto ‘true’ if both aand b evaduate to true. Otherwise it will

evduateto fdse

Example -- Tofind dl ‘name dements where the ‘fore’ child dement and the *sur’ child
element are equal to ‘Bob’ and ‘ Jones' respectively:

custorders/custoner/nane[fore = ‘Bob’ and sur = ‘Jones’]

Example -- Tofind dl ‘customer’ dements that have at least one ‘order’ child dement,
and which have a‘email’ child demert equal to ‘ bob@yahoo.com’:

custorders/custoner[order and email = ‘bob@ahoo. coni]

OR Expression

2 Lexical comparison means that the two values will be compared asif they are text strings, even if they can
be represented as numbers. For example, ‘1’ islexicaly different from ‘001, but numerically equal. For a
full explanation, see section 1.4.1.

The‘OR’ boolean expression is represented in XML Get queries by ‘or'. In the
expresson ‘aor b', where aand b are either comparisons or ‘there-exists-a methods,
the expresson will evaluate to ‘true’ if either aor b, or both aand b, evaluate to true.
Otherwise it will evauate to fase.

Example -- To find dl the ‘cusomer’ eements where the ‘fore child dement isequd to
‘Robson’ or the “sur’ child dement is equd to *Robson'.

custorders/customer[fore = ‘ Robson’ or sur = ‘ Robson’]

Example -- Tofind al the ‘customer’ dements that have elther ‘order’ or ‘fax’ child
elements.

cust order s/ customer[order or fax]

NOT Expression

The ‘NOT’ boolean expression is represented in XML Get queries by *not . In the
expression ‘not &, where ais either a comparison or a‘there-exists-a method, the
expresson will evauateto ‘true if aevaluatesto ‘fase’. Otherwise it will evaluate to
fdse.

Example -- Tofind dl the ‘customer’ dements where the ‘fore’ child dement is not
equa to ‘Bob’

custorders/custonmer[not fore = ‘ Bob’]

Example -- Tofind al the ‘customer’ dementsthat do not have ‘fax’ child eements.

cust orders/ cust oner[$not $ f ax]

Ordering Boolean Expressions

When combining boolean expressions parenthesis‘(* and)’ can be used to determine the
order in which they should be evaluated. Expressionsingde parenthesswill dways be
evauated fird; otherwise expressons will be evauated from |eft to right.

Example -- Tofind dl *customer’ eements that do not have *order’ child dements, and
do not have *sur’ child dements equd to * Smith’.

custorders/customer[$not $(order and sur = ‘Smith’)]

This can be compared to the following, which will find dl ‘ cusomer’ dements that do
not have ‘order’ child e ements, and do have ‘sur’ dements equa to ‘ Smith':

custorders/custoner[not order and sur = ‘Smith’]

1.3.4 Subscripts

Subscripts dlow a particular element to be salected according to its position in aset, and
they use a smilar notation to filters to goecify the index of that eement.

Example -- Tofind thefirg ‘emal’ dement within a‘name dement:

name/ emai | [1]

1.3.5 Union and Intersection

XMLGet alows two set operations: union and intersection, to be used in queries. These
are represented by ‘$union$’ and ‘ $intersect$’ respectively.

Union

Union of Queries

The union operator can be used to combine the results of two queries. In the expresson ‘a
$union$ b’ where both aand b are XML Get queries, a collection containing the results of
both queries will be returned.

Example -- Tofind dl of the ‘fore’ dements equa to ‘Bob’, plusdl of the ‘order’
elementswith “id” attributes equal to *101':

custorders/customer/nane/fore[.="Bob'] $union$
custorders/customer/order[@d = '101"]

Union within Queries

The union operator can aso be used to combine groups of e ements within queries. In the
expression ‘ (a$union b)/c’, where g, b are rdative path structures and ¢ isa group of
elements, dl of the dements of type c that are child e ements of those represented by aor
b will be returned.

Example -- To find dl ‘ countrycode’ dements within ‘fax’ and ‘telephone’ dements:

custorders/custoner/(fax $union$ tel ephone)/countrycode

Example -- Tofind dl ‘email’ dements and ‘ postcode’ dements within ‘address
elements, dl within cusomer eements:

cust orders/ custoner/ (address/ post code $uni on$ email)

Note that when unions are performed within queries, parenthesis must be used to avoid
ambiguity. If the parenthesis were removed from the above example, it would be taken to
mean the union of the query ‘ custorders/customer/address with the separate query
‘emal’.

Intersection

Intersection between Queries

Theintersection operator can be used to return a collection of those dements from two
different queries that have textua content in common. In the expression ‘a$intersect$ b,
whereaand b are XML Get queries, acollection of dements will be returned containing
elements from the results of both aand b. The textua content of those éements from the
results of query amust match the textua content of at least one element from the results
of b.

Example -- To find dl of the ‘ postcode’ elementsand ‘itemid’ elements where every
‘postcode’ eement is equd to at least one ‘itemid’ eement.

cust order s/ cust oner/ addr ess/ post code $i ntersect$
custorders/custoner/order/itemd

Intersection within Queries

The intersection operator can also be used to find e ements that intersect within queries.
In the expression ‘a/(b $intersect$ c)’, where a, b, and ¢ are groups of ements, a
collection will be returned containing e ements of types b and c¢. The textua content of
those dements of type b must match the textua content of at least one eement of typec,
and dl the dementsin the collection must be child dements of a

Example -- Tofind dl ‘fore’ and *sur’ eements where each ‘fore’ dement isequd to at
least one *sur’ element (i.e. somebody has the same surname and forename):

cust orders/custonmer/ name/ (fore $intersect$ sur)

Example -- Tofind dl ‘number’ dements within ‘fax’ or ‘telephone’ eements, where

each ‘fax’ dement isequd to at least one ‘telephone’ eement.

custorders/custoner/(fax $intersect$ tel ephone)/ nunber

Aswith unions, when intersections are used within queries, parenthesis must be used to

avoid ambiguity.

Set Operations within Filters.

Set operations can aso be used within filters. They can be performed either within sub-
queries, or between two sub-queries on the left-hand side of a comparison. Set operations
cannot be performed between sub-queries on the right-hand side of a comparison, asthey
will dways return multiple vaues, whereas the right hand side of a comparison can only
have asngle vaue.

Set operations can be performed on right-hand operands when a specid type of
comparison caled a‘ group comparison’ is being used; for further details see section
141

Example -- Tofind dl ‘cusomer’ dementswhose ‘name’ child dements have at least
one ‘fore’ and ‘sur’ child dement with identica textua content, and at least one of these
elementsis equd to ‘Bob’ (i.e. somebody is caled “Bob Bob”):

custorders/custoner[nanme/ (fore $intersect$ sur) = ‘Bob’)]

Example -- Tofind al *customer’ eements where any of the ‘id’ attributes or the
‘countrycode child eements of the ‘telephone’ child eements are equd to ‘667" :

custorders/custoner[tel ephone/ countrycode $union$ @d = ‘667’]

Ordering Set Operations

Like boolean expressions, the order in which set operations are performed can be
determined by using parenthesis. Operations within parenthesis will dways be performed
before those outside.

Example -- To perform an ‘intersection’ operation between ‘fax/number’ dements and
‘telephone/number’ dements and then a*union’ operation between these and
‘cusomer/emall’ dements:

cust orders/customer/email $uni on$
(cust orders/custoner/fax/ nunber $intersect$
custorders/custoner/tel ephone/ nunber)

1.4 Advanced Syntax Tutorial

1.4.1 Advanced Comparisons

Numerical Comparison Operators

XMLGet has anumber of operators for comparison of numerica vaues. Since‘l’ is
lexicdly equa to ‘001" but numericaly not equd, and ‘10 islexicdly lessthan 2 but
numerically grester, thisis a very important festure. Numerical comparison operators are
identical to their lexica counterparts, except they have periods ‘.’ on either side (e.g.
‘*.=)). Thisisgmilar to the syntax of xtract.

When anumerical comparison operator is used in XML G, the query engine will attempt
to convert both the left and right operands in the comparison to numerical values. If the

converson falls, alexica comparison will be performed.

Example -- To find dl those ‘customer’ dementsthat have numericd ‘id’ attributes that

are numericaly less than 100.

[lcustomer[@d .<. ‘100’]

XMLGet's method of numerical comparison differs dightly from XQL, which uses
quotes (*') to specify values for lexica comparison, and vaues without quotesto imply
numerica comparison. Thisisfinefor querieslike ‘//cusomer[@id < 100]’, but Since

XML does not support typecasting it isimpossible to determineif aquery like

‘lcustomer|tel ephone/number = fax/number]’ is supposed to use lexica or numericd

comparison.

Example -- Tofind al those ‘cusomer’ dements where a“*number’ child dement of a
‘telephone’ child dement is numericaly less than the ‘number’ child ement of the ‘fax’
child dement:

[l customner[tel ephone/ nunber .<. fax/nunber]

The full set of numerica comparison operatorsis asfollows

a.=nb Returnstrueif ais numericaly equa to b

a.l=.b Returnstrue if ais numericaly not equa to b

a<.b Returnstrueif aisnumericaly lessthan b

a>.b Returnstrueif ais numericaly greater than b

a.<=.b Returnstrueif aisnumericaly lessthan or equd to b
a>=.b Returnstrueif ais numericaly greater than or equa to b

Non-Exact Comparison Operators

Often it is desirable to make comparisons based on specific parts of the textua content of
an dement or atribute, rather than the entire content. The non-exact comparison
operators are therefore an important part of XML Get’s query language.

Sub-string Operator

The sub-string operator (*$contains$’) can be used to find out whether the text string
represented by the right-hand operand in a comparison is a sub-gtring of the left-hand
operand. The syntax for sub-gtring comparisonsis exactly the same as for any other
comparison.

Example -- Tofind dl ‘fore’ dements containing the letter ‘a:

[Iname/fore[. $contains$ ‘a’]
There is dso a case-insendtive verson of the sub-string operator; thisis represented by

‘Sicontains$.

Example -- Tofind dl ‘cusomer’ dementswith ‘emall’ child dements containing
‘Yahoo', 'YAHOQO', ‘yahoo’ etc.

custorders/custonmer[email $contains$ ‘yahoo’]

Regular Expression Matching

XML Get supports regular expression matching through the ‘ $regmatch$ comparison
operator. In the expression ‘a $regmatch$ b’, where arepresents a set of dements or
attributes and b represents a regular expresson, the expresson will evauate to trueif the
textua content of any eement or attribute within a matches the regular expresson b.

Example -- Tofind al *postcode’ elements whose textud content contains three digits.

[/ cust omer/ addr ess/ postcode[. $regmatch$ ‘\{d} 3]

Asin other comparisons, the right-hand operand does not have to be avaue enclosed in
quotes, but can be a sub-query, provided the sub-query returns asngle vaue that

represents avaid regular expresson.

For full details of supported regular expression syntax see the GNU Regexp syntax
details.

Set Comparison Operators

Asexplained in section 1.3.2, norma comparisons require the right-hand operand to
represent only a single vaue. With smple queries this is acceptable, but with more

complex ones, perhaps ones with many sub-queries, we need to be able to do set
comparisons, those readers familiar with SQL may wish to imagine the usefulness of that
language without sub-queries being able to return multiple values.

Anadogousto the SQL ‘IN’ operator, XML Get allows set comparisons to be performed
using the‘in operator. In the expression ‘ain b’, where aand b represent groups of
elements or atributes, the expresson will evaluate to ‘true’ if the textud content of at
least one element from group ais equd to at least one e ement from group b. Otherwise it
will evluateto ‘fas='.

Example -- Tofind dl ‘name child ements of ‘ country’ dements whose shling
element ‘code’ matches any of the ‘ countrycode’ dementswithin ‘customer’ ements
(i.e. tofind dl the names of countries that customers have telephone or fax numbersin):

//country[code in //custoner//countrycode]/nanme

The case-insengtive verson of the set comparison operator is‘ $ing'.

1.4.2 Display Filters

One mgor weskness of XQL as a query language isthe fact that it can only return
dements from oneleve of adocument a atime®. For example, if we wanted to find the
email addresses of dl customers, XQL could only return alist of ‘email’ dementson
their own, without returning the ‘ customer’ dementsthey related to. Those readers
familiar with SQL may wish to imagine the usefulness of that language if they were only
ableto put asingle field name after the ‘ SELECT’ operator. XQL can return eements
from different levels of adocument if queries are joined by the ‘$union$’ operator, but
this can be quite inefficient and it isimpossible to tel which dements rdae to each
other. For example, from the results of the query ‘ custorders/customer $union$

3 XQL can return elements from different levels of adocument if arecursive descent operator (see section
1.3.1) is used; the elements have to all have the same name, however.

cugtorders/'customer/email’ we cannot determine which ‘email’ dements are children of

which ‘cusomer’ dements.

XMLGet has two display filters. The ‘{ content}’ filter will digplay the textua content of
aparticular dement, dong with its tag name and attributes, and the ‘{ name}’ filter will
just digplay an element’ stag name and attributes. Display filters can be used after each
element name in aquery; if filters or subscripts are used, they should be placed after the
filter or subscript. It is syntacticaly vdid to use digplay filtersin sub-queries, but they
will just be ignored if they are used.

Example -- Tofind dl *customer’ dements and their associated ‘emall’ child dements:

custorders/custoner{content}/ennil

Example -- To find the names of al dements whose textua content contains the | etter

a:

[1*[. $contains$ ‘a’]{nane}

Example -- To find dl the tag-names (including attribute vaues) of dl ‘ customer’
elements dong with their ‘emal’ child dements, and dl those dements within them that
have ‘number’ child dements containing ‘0’

custorders/custoner{nane}/ (email $union$.//*[nunber $contains$
‘0])
In the above example, the ‘email’ dements and other dements within * customer’ will be
returned from the query as child dements of ‘customer’ (even if they are not child
elements in the document).

The dements a the end of every query (after the last path operator /') will dways be
digolayed asif they have an associated { content} display filter, unless another oneis

explicitly specified.

Although it is syntacticdly correct to use adisplay filter in asub-query, dl such display
filters will be ignored.

Formal Query Grammar

Theformal grammar is given in BNF (Backus-Naur Form) notation. It borrows the Nane,
Char and Di gi t productions from the W3C XML 1.0 Recommendation.

Query M Set Operati on

Set Oper ati on L= Path | SetOperation SetOQp SetOperation
Set Op ::= ‘$union$ | ‘Sintersect$’

Bool eanExpr essi on D= Conpari son |

Bool eanExpr essi on Bool eanOp
Bool eanExpressi on |

“not Bool eanExpression |
‘(' Bool eanExpression ‘)’

Bool eanOp = ‘and’ | ‘Sor§
Conpari son L= Lval ue |

Mul tiplicityOp* LVal ueSet Operati on
Conpari sonOp Rval ue |

Mil tiplicityOp o= ‘any | ‘sall$

Conpari sonOp = = | > | k= | = | Sieqd |
‘$ined | "SIty | “Sigty | ‘$led |
“$ged’ | .= | ta<] s | <= |
‘.>=." | ‘$contains$’ | ‘S$icontains$ |
‘ $regmat ch$’

Set Conpari sonOp ‘$ing | ‘$iing | ‘in
LVal ueSet Oper ati on M Lval ue |

Lval ueSet Oper ati on Set Op
Lval ueSet Operati on |

‘(* Lval ueSet Operation ‘)’

LVval ue D= Rel ativePath | Attribute |
Rel ativePath ‘/’ Attribute

Attribute M ‘@ (* | Name)

Rval ue D= Path | Attribute | Path */’ Attribute |
Char* *"’

Pat h ::= AbsolutePath | RelativePath

Absol ut ePat h L= Pat hOp Rel ati vePath
Pat hOp D= S
Rel ati vePat h L= Di splayFilter |

Di spl ayFilter PathOp Rel ati vePath

Di spl ayFilter D= Subscript |
Subscri pt Di spl ayOperation |
‘(* NonPat hSet Operation ')’

NonPat hSet Oper ati on D= Rel ati vePath Set Op NonPat hSet Operati on
Rel ati vePath Set Op Rel ati vePath

Di spl ayOper ati on D= {content} | {nane}

Subscri pt e Filter |

Filter *[* Digit "] |

Filter D= Rel ati veTerm |
Rel ativeTerm ‘[

Bool eanExpression ‘]’

Rel ativeTerm L= *] .7 | Nane

